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The development of models to assess air pollution exposures within cities for assignment to subjects in health studies has been identified as a priority area

for future research. This paper reviews models for assessing intraurban exposure under six classes, including: (i) proximity-based assessments, (ii)

statistical interpolation, (iii) land use regression models, (iv) line dispersion models, (v) integrated emission-meteorological models, and (vi) hybrid models

combining personal or household exposure monitoring with one of the preceding methods. We enrich this review of the modelling procedures and results

with applied examples from Hamilton, Canada. In addition, we qualitatively evaluate the models based on key criteria important to health effects

assessment research. Hybrid models appear well suited to overcoming the problem of achieving population representative samples while understanding the

role of exposure variation at the individual level. Remote sensing and activity–space analysis will complement refinements in pre-existing methods, and

with expected advances, the field of exposure assessment may help to reduce scientific uncertainties that now impede policy intervention aimed at

protecting public health.
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Introduction

The development of models to assess air pollution exposures

within cities for assignment to subjects in health studies has

been identified as a priority area for future research

(Brunekreef and Holgate, 2002; Brauer et al., 2003). While

surrogate measures, such as distance to roads, have been

related to large health effects (Hoek et al., 2002), these may

misclassify exposure because they are not directly estimated

from monitored data. Potential alternatives to surrogate

measures arise from geographic and dispersion exposure

methods. These methods utilize geographic information

systems (GIS) to combine available geographic data with

short-term monitoring information to develop exposure

models capable of identifying small-area variations in

pollution. Results from these models can then be overlaid

on geo-referenced health data to assign exposure to

individuals at their place of residence, work, or some

combination of both.

Interest in assessing exposure to ambient air pollution at

the intraurban scale (i.e., within-city scale) has increased for

a variety of reasons. First, the contribution of traffic

pollution has grown, and most studies agree that the demand

for transportation will exceed improvements to emission

reduction technologies (Faiz, 1993; Delucchi, 2000). Re-

gardless of regulatory interventions, higher exposure to traffic

pollution with distinct intraurban gradients may be seen

around major roads and highways (Gilbert et al., 2002).

Recent exposure studies have shown that for some pollutants

associated with traffic, such as nitrogen dioxide (NO2) and

ultrafine particles, variation within cities may exceed varia-

tions between cities (Briggs, 2000; Zhu et al., 2002). Some

studies from the United Kingdom (UK) indicate two- to

three-fold differences in NO2 within distances of 50m or less

(Hewitt, 1991), while US studies suggest ultrafine particles

are elevated above background concentrations until about

300m of highways (Zhu et al., 2002).

Second, while results remain far from conclusive (English

et al., 1999), sufficient number of studies have uncovered

positive health effects to suggest that the exposure experience

within cities may exert significant health effects. For example,

a recent study from the Netherlands reported a doubling of
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cardiopulmonary mortality (relative risk (RR)¼ 1.95, 95%

CI 1.09–3.52) near major roads in a cohort of 5000 people,

where extensive control was available for confounding

factors. Urban background pollution interpolated from

government monitoring sites also exerted an independent

effect on mortality (Hoek et al., 2002). Yet, this study used

the most basic type of exposure measurement (i.e., buffers),

and a need exists to test similar relationships with more

robust exposure metrics.

Third, over the past 10 years, advances in GIS and

associated statistical techniques have expanded into the field

of exposure analysis (Collins, 1998; Melnick, 2002). These

technological and methodological innovations have fuelled

research on intraurban exposure because what would have

been previously impossible or taken many years to accom-

plish can now be done in weeks to months. Coupling of

dispersion, atmospheric, and time-activity models with GIS

capabilities has led to even more sophisticated attempts to

characterize intraurban exposures (Kramer et al., 2000;

Mukala et al., 2000).

To date, there have been no published reviews of models for

assessing intraurban exposure. In an effort to fill this gap in the

literature, we have identified six classes of models for deriving

intraurban exposure assignment, including: (i) proximity-based

assessments (e.g., Venn et al., 2000); (ii) statistical interpolation

(e.g., Jerrett et al., 2001a); (iii) land use regression models

(e.g., Briggs, 2000; Hoek et al., 2001); (iv) line dispersion

models (e.g., Bellander et al., 2001); (v) integrated emission-

meteorological models (AMD and NOAA-EPA, 2003); and

(vi) two classes of hybrid models, the first combining personal

or household exposure monitoring with one of the preceding

methods (Kramer et al., 2000; Zmirou et al., 2002) and the

second combining two or more of the preceding methods with

regional monitoring (Hoek et al., 2001).

We have organized this paper into three main sections.

First, we systematically review literature on models for

intraurban exposure assessment under the typology of the

models above. We also enrich this review with applied

examples from Hamilton, Canada. Second, we present a

qualitative evaluation of the models based on key criteria

important to health effects assessment. The paper concludes

with a discussion of priorities for future research.

Methods

The literature review discusses exposure models proceeding

from the simple to the more complex. In most instances,

progression from one type of model to another entails

increased implementation costs in terms of research time,

software, hardware and data requirements. These must be

weighed against potential benefits in the accuracy of the results.

We used the following inclusion criteria to guide our

search: (a) recent publication in a peer-reviewed journal

available in the PubMed database (1997–2002); (b) testing of

an empirical model using real data inputs (as opposed to a

conceptual treatise); (c) some connection to exposure

assessment for health studies or potential to be used in these

studies, instead of a model focused purely on meteorological,

traffic, or land use processes; and (d) some emphasis on

intraurban or traffic-related pollution. The review is not

intended to be exhaustive, but rather to identify representa-

tive examples of model type and to highlight some of the

empirical findings when subsequent modelled exposures are

applied to health outcomes.

Keywords beginning with ‘‘air pollution’’ followed by the

terms: ‘‘long-term’’, ‘‘traffic’’, ‘‘asthma’’, ‘‘health effects’’,

‘‘kriging’’, ‘‘monitoring’’, and ‘‘MM5’’ were entered into

PubMed. The search was performed for articles published in

English from 1997 to August 2002. The estimated number of

related articles was approximately 3100. Many of these were

outside our inclusion criteria and were excluded. In a few

instances, we relaxed the inclusion criteria to cover articles that

were helpful in interpreting other studies or were published

after 2002, but met other aspects of the inclusion criteria.

Results

This section summarizes the results of our review by

providing, for each model type, an overview of the methods,

a synopsis of the applied studies using the particular method,

a discussion of the outcome from applied studies, and a brief

evaluation.

Proximity Models

Overview Measuring the proximity of a subject to a

pollution source represents the most basic approach in

differentiating intraurban air pollution exposures. This

method helps to identify relationships between air pollution

and health outcomes based on the assumption that nearness

to emission sources proxies for exposure in human

populations. Figure 1 illustrates a typical road buffer that

may be used to assign exposure to respondents from a

respiratory health survey based on proximity to major

roadways in Hamilton, Ontario, Canada. Respondents

within a given distance would be assigned a ‘‘1’’, while

respondents outside prespecified distance would receive a

‘‘0’’. Proximity estimates have been widely used to assess the

exacerbation of asthma symptoms in children with the use of

empirical models.

Application Our review examined 12 peer-reviewed papers

focused on the association between road proximity and

respiratory disease, lung cancer and stroke mortality with

most quantified within a buffer of some predefined extent.

The majority of these studies were conducted in countries
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across Europe (van Vliet et al., 1997; Ciccone et al., 1998;

Wilkinson et al., 1999; Venn et al., 2000, 2001; Wyler et al.,

2000; Janssen et al., 2001; Hoek et al., 2002), one in San

Diego, California (English et al., 1999), one in Los Angeles

(Langholz et al., 2002), one in England and Wales

(Maheswaran and Elliot, 2003) and one in Hamilton,

Canada (Jerrett et al., 2002). All studies focused on the

intra-urban scale, where traffic counts and distance to roads

were the two main indicators of pollution exposure estimates.

Nine analyses involve school children, but three surveyed

adults.

Researchers often combine proximity measures with

measures of road type or traffic density to differentially

classify exposure based on both potential emissions and

distance from source. Between studies, the exact implementa-

tion of the buffering analysis varies. Janssen et al. (2001)

measured particulate matter less than 2.5 mm (PM2.5), NO2,

and benzene. The measurements were taken inside and

outside a group of 24 schools located within 400m of major

traffic routes. They found significant positive associations

between the pollution concentration and decreasing distances

to schools from major automotive routes. Wyler et al. (2000)

matched traffic inventory, which included data on the

average number of cars and trucks passing per hour at each

participant’s home address. Venn et al. (2000) used a traffic

activity index. Vehicle flows were measured on roads in the

vicinity of the study schools as a continuous measure of

traffic density for those 1-km2 grid cells containing a school.

Respondents surveyed in the study conducted in 10 Italian

cities were asked to answer questions about the level of traffic

density and frequency of passing buses with the classification

never, seldom, sometimes in a day or often in a day.

Questions were limited to those living in houses with windows

facing the street (Ciccone et al., 1998). Venn et al. (2001)

used another method that proxies for traffic-related air

pollution using continuous distance from the child’s home to

the nearest main road as the exposure proxy. Jerrett et al.

(2002) used buffers at different distances from major roads to

assess distance decay (i.e., 0–50, 51–100, and 101–150m).

English et al. (1999) implemented a traffic emissions model

and combined this with circular buffers around the subjects’

homes. The Langholz et al. (2002) leukemia study assigned

traffic exposures to their case–control study using a Gaussian

weighted traffic density assignment (Pearson and Fitzgerald,

2001). Maheswaran and Elliot (2003) measured the distance

from the centroids of the respective census enumeration

district to the closest major road and used this value as a

proxy for exposure.

Links to Health Effects Research findings suggest that

higher traffic counts or emissions near the residence may

exacerbate asthma symptoms (van Vliet et al., 1997; Ciccone

et al., 1998; Venn et al., 2000, 2001), yet little evidence

supports a link between asthma onset and intraurban

exposure. For example, after controlling for confounding

effects such as age, sex, and race, English et al. (1999) found

no evidence of increased risk of asthma in children under 14

with an increase in traffic counts. Yet among children with

asthma, the number of medical care visits escalated with

higher traffic counts. Conversely, Wilkinson et al. (1999)

found no association between children, ages 5–14 years,

within 150m of a main road and the number of hospital

admissions for treatment of asthma. For a study on adult

asthma in Hamilton by Jerrett et al. (2002), women, aged

20–44 years, within 50m of a major road were associated

with a 50% increased risk of reporting asthma symptoms,

but no significant association was found for males. None of

the asthma studies used a prospective cohort design to assess

the question on asthma formation. Consequently, these

results must be viewed with this limitation in mind (cf.

McConnell et al. (2002) for a cohort approach at the

interurban scale).

With respect to other outcomes, the study by Langholz

et al. (2002) found no association between leukaemia and air

pollution. Maheswaran and Elliot (2003) reported a

significant positive association between air pollution and

stroke mortality.

Evaluation While the proximity method provides a

straightforward application for the analysis of long-term

exposure classification, it has considerable limitations. First,

studies use a restricted number of covariates that could

possibly confound the relationship between air pollution and

health. Most studies of this type ignore population exposure

to traffic exhaust at locations other than the place of

residence, school or work (English et al., 1999), potentially

leading to misclassification and biased risk estimates. Neglect

of time–activity patterns runs through most of the exposure

models we examined, but seems particularly problematic for

Figure 1. Example of binary classification within a buffering scheme
for proximity models.
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methods that already discard much of the exposure

information by proxying exposure with distance to source.

Second, the vehicle mix may have an influence on emissions

(e.g., trucks versus cars) (Kanaroglou et al., 2000; Gertler,

2003), and most studies have not taken this into account.

Third, wind patterns and topography may violate the implicit

assumption of isotropic dispersion (i.e., the same dispersion

pattern in all directions) that underlies this method. Given

that air pollution represents a continuous spatial process that

would decay with distance away from the roadway, use of

binary road buffers will confer exposure misclassification for

subjects still in the actual influence zone (especially on the

downwind side), but outside the buffer. Fourth, one study by

Rijnders et al. (2001) has found that surrogate measures of

pollution such as distance to expressway is correlated with

markers of traffic pollution, but in complex environments,

these basic methods may misclassify exposure when terrain

and meteorological conditions modify the exposure

experience. Finally, analyses that require self-reported

measures of traffic exposure are subject to recall bias (Venn

et al., 2000). This occurs because subjects are already

concerned about traffic impacts due to the noise and other

nuisance factors that emanate from roadways, although this

problem applies to a relatively small number of studies, as

most use objective measures that avoid self-reports.

Proximity methods may still contribute to environmental

epidemiology as a form of exploratory analysis. It may be

appropriate for research areas where aetiologic suspicion of

effects exists, but there is little prior evidence. In other words,

proximity methods may be quite useful for research questions

or health effects assessment at a formative stage, where large

investments in complex exposure assessments would be hard

to justify. Arguably, for intraurban air pollution research on

asthma and mortality, we may be nearing the end of this

exploratory phase, with concurrent needs to advance toward

more sophisticated methods.

Proximity buffers can also be useful for assessing distance

decay in assigned health effects. These buffers can mimic a

dose-response when subjects’ assigned distances to emission

source have similar exposure gradient characteristics. Figure 2

shows the odds of reporting asthma symptoms in Hamilton

based on different distances from major roads. As evidenced

by these results, we see a pattern of declining risk with

increasing distance from the road, suggesting that distance

from roadways proxies for pollution dose. Some models have

used distance from point sources, along with other con-

founding characteristics, as a predictor of ‘‘raised incidence’’

in the point pattern of disease (Diggle and Rowlingson,

1994).

Interpolation Models

Overview Interpolation models rely on deterministic and

stochastic geostatistical techniques. Measurements of the

target pollutant are obtained at a set of monitoring stations

distributed throughout the study area. On the basis of this

information, the objective is to generate estimates of the

concentration of pollutant at sites other than the location of

monitoring stations. Usually, estimates are obtained at the

centre of a grid, imposed over the study area, so that a

continuous surface of pollution concentration can be

established. The most common geostatistical technique used

in the air pollution field is ‘‘kriging’’ (Jerrett et al., 2001a).

Kriging methods are known as optimal interpolators because

they supply the best linear unbiased estimate (BLUE) of the

variable’s value at any point in the study area (Burrough and

McDonnell, 1998). A major advantage stems from the

production of both predicted values and their standard errors

(kriging variance) at unsampled locations. These standard

errors quantify the degree of uncertainty in spatial

predictions at unsampled sites, illustrating where the

interpolation is less reliable (Mulholland et al., 1998).

Kriging models exploit spatial dependence in the data to

develop continuous surfaces of pollution. Beyond random

error or noise in the data, spatial dependence embodies two

types of effects. First-order effects, otherwise known as

global trends, measure broad trends in the data over the

entire study area. In contrast, second-order effects measure

local variations that are a function of distance between the

points (see Bailey and Gatrell, 1995; Burrough and

McDonnell, 1998).

Other methods, such as splines, inverse distance weighting

and Theissen triangulation rely on deterministic or geometric

algorithms that may produce reasonable estimates of the

pollutant at unsampled sites, but they offer no means of

assessing statistically represented errors in the estimates.

Figure 2. Odds ratio for proximity to roads model for females,
Hamilton.
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These methods are simpler to apply and, in this sense,

estimates obtained by them may be more appropriate in

instances where the sampling network is sparse and errors are

assumed to be large.

Application Several intraurban interpolation studies have

been conducted in North America and Europe. Pikhart et al.

(2001) used geostatistical modelling for the estimation of

small-area sulphur dioxide (SO2) levels. In a similar

modelling effort, Mulholland et al. (1998) analysed the

spatial and temporal distributions of ozone in the 20-county

Atlanta metropolitan area using the universal kriging

technique to generate concentration levels over the study

area. Jerrett et al. (2001a) used this technique to model total

suspended particulates (TSP) in Hamilton, Canada. A study

by Abbey et al. (1999) to assess the effect of different types of

air pollution on a number of mortality outcomes was

conducted with a cohort of nonsmoking Californian

Adventists. Using the inverse distance weighting method,

they calculated relative risks based on assigned exposures.

Finkelstein et al. (2003) assessed associations between air

pollution and mortality using similar kriging estimates for

TSP and SO2 in Hamilton. Ritz et al. (2000) used a modified

Theissen triangulation for a number of pollutants to assess

the health effects of pollution on preterm birth in Southern

California. They assigned pollution values to a zip code

location only if it fell within 3.2 km (2 miles) of the air quality

monitor.

When auxiliary variables such as population density, traffic

emissions, or meteorological conditions are to be linked to

the pollutant concentration, a technique known as cokriging

can be used. This technique integrates the spatial behaviour

of the pollutant and the auxiliary variable by incorporating

the cross-correlation between them (Bailey and Gatrell,

1995). These advanced methods have not yet been imple-

mented to assess health effects, but have considerable

promise where sufficient data exist.

Links to Health Effects Overall, higher modelled

concentrations of pollution seem to associate with increased

respiratory health effects, mortality, or health effect

modifiers. The study by Pikhart et al. (2001) examined the

long-term effects on respiratory symptoms and disease in

children in the cities of Prague and Poznan, Czech Republic.

Their study group included 6959 school children, 7–10 years

of age. Confounding factors, such as maternal smoking, type

of home, sex and ages were taken into account. Ambient SO2

levels were positively associated with prevalence of wheezing/

whistling and asthma. Similarly, Mulholland et al. (1998)

studied the relationship between modelled ozone levels and

paediatric asthma exacerbation. This study continued for

three successive summers F 1993, 1994 and 1995 F with

ozone levels obtained from 10 monitoring stations on an

hourly basis. The study subjects included paediatric (0–16

years of age) emergency room (ER) visits. To capture spatial

and temporal information, the spatial average of daily zone

values for the day prior to the ER visit was assigned to each

patient using the zip code of the residence. Results from the

study indicated an underestimation between the temporal

variation in daily maximum ozone concentrations and the

maximum values estimated by the kriging technique. Despite

these errors, a positive association between ozone and asthma

was found with a 20-p.p.b. increase in ambient ozone

concentration relating to a 4% increase in the ER visit rate.

Abbey et al. (1999) found that there were a number of

significant associations between different pollutions and the

range of mortalities tested. Different particulate matter (PM)

measures showed strong association with lung cancer in men;

high PM exposure, that is, PM10 above 100mg/m3, was

associated with elevated natural cause, nonmalignant re-

spiratory and cardiopulmonary mortality in men; positive

significant association of lung cancer to SO2 levels were

found in men and women. Ozone was shown to have a

significant effect on elevating risk for lung cancer in men as

was NO2 for women.

For a subset of subjects with age of entry similar to other

cohort studies (i.e., 55–69 years), Finkelstein et al. (2003)

computed an increase in nonaccidental mortality of 47%

(RR¼ 1.47, 95% CI: 1.16–1.86) for 10mg/m3 PM2.5

equivalent. TSP in this study can be converted to a

10 mg/m3 PM2.5 equivalent with a ratio of 25% PM2.5 to

TSP (based on assessment of 1999 pollution data supplied by

the Ontario Ministry of the Environment).

Preterm births were associated with air pollution in the

Ritz et al. (2000) study. A 50 mg increase in PM10 6 weeks

before birth was shown to cause a 20% increase in preterm

birth (RR¼ 1.20, 95% CI: 1.09–1.33). Exposure to PM10

early in the pregnancy increased the risk of preterm birth by

16% (RR¼ 1.16, 95% CI: 1.06–1.26). Assessing the effects

of carbon monoxide (CO) (an increase of 3 p.p.m.) they

found strong health effects only for those living inland F
13% increase (RR¼ 1.13, 95% CI: 1.08–1.18) in preterm

birth exhibited from exposure 6 weeks prior to birth. A

weaker effect was found at all locations for exposure during

the first month of pregnancy (RR¼ 1.04, 95% CI: 1.01–

1.09).

Evaluation The main advantage of interpolation techniques

over proximity models is their use of real pollution

measurements in their computation of exposure estimates.

They can provide credibility to the analysis by quantifying

the level of exposure difference between subjects and in

computing dose–response relationships. Interpolation

techniques such as IDW, spline, global/local polynomials,

and multiquadratic techniques routinely cause estimation

artifacts that resemble source or sinks of pollution. This can

be attributed to the distance-weighting involved in these

interpolation calculations. An evaluation of different
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interpolation techniques by Mulugeta (1996) compared

interpolations created by a computer program and

manually by well-trained climatologists/meteorologists and

geomorphologists. Three major issues were brought to the

forefront: (1) interpolation algorithms are mechanistic (i.e.,

they do not take other factors into account such as terrain or

localized patterns in other possible predictors); (2) variability

can be exaggerated with too many peaks and depressions

with too high a gradient; and (3) algorithms fall apart at the

edges due to lack of data. As a result, informed subjective

editing may be necessary to produce a more realistic

statistical surface. Data may be added between measured

data points to eliminate the distance weighting or edge effects

commonly produced with regular interpolation algorithms.

Kriging may be a better option as much of the erroneous

local variability produced with other interpolations is better

dealt with by intrinsic structure of the kriging model; yet poor

edge representation is still an issue.

Ordinary kriging assumes no global trend in the data and

suffers the necessary disadvantage of assuming a spatially

homogenous variation (called ‘‘the stationarity assumption’’)

(Mulholland et al., 1998). According to this assumption,

between sites, pollution variation within the study area is

dependent on the distance between the sites and the direction

of the straight line that connects the sites. Violation of this

assumption may lead to estimation errors, although the

technique is developed well enough to allow detection of such

errors (Pikhart et al., 2001). Universal kriging, an extension

of ordinary kriging, incorporates a drift function to account

for a structural component in spatial variation (global trend)

of the pollutant of interest, and may be of use where trends in

the pollution level mix with local variation (Mulholland et al.,

1998; Jerrett et al., 2001b).

A disadvantage of geostatistical interpolation relates to the

availability of monitoring data. Geostatistical modelling

requires a reasonably dense network of sampling sites. The

number of sites for an urban area is typically in the range of

10–100, depending on the scale of analysis, scale of

variability in the pollutant, local emissions, desired errors in

estimates, topography of the study area, and prevailing

meteorological conditions. Generally, government monitor-

ing data come from a sparse network of stations, often

selected to represent those areas most likely to be affected by

industrial and heavy transportation emission sources. Re-

liance on government monitoring normally results in surfaces

that over-smooth the true pattern of pollution and may

introduce large errors in estimates over extended portions of

the study, where few observations are available. This

problem may be more severe in pollutants known to vary

significantly over small scales such as NO2, in networks with

large spatial holes, or in areas with unusual topographic or

meteorological variation.

Overcoming these problems may necessitate primary data

collection. The high cost of primary data collection often

means researchers must ‘‘grab’’ data for short temporal

periods, which may or may not adequately represent the

long-term distribution of the pollutant. In addition,

researchers may be forced to rely on one or two proxy

pollutants that are easily monitored, leaving key aspects of

air pollution such as particles out of the mix. Thus,

researchers often find themselves caught between relying on

a government network with limited spatial representative

strength or on their own network, which usually lacks

temporal coverage.

To implement the geostatistical kriging model, the location

of monitors and the digital boundary of the study area are

integrated within a GIS. This requires specialized software

and hardware (GIS and statistical software) as well as trained

and experienced researchers to carry out the analysis.

Although improvements to software such as ESRI’s Arc 8

geostatistical analyst have brought the methods to a wider

audience of practitioners, proper application usually requires

experience with geostatistical models.

Land Use Regression Models

Overview The land-use regression methodology seeks to

predict pollution concentrations at a given site based on

surrounding land use and traffic characteristics. More

formally, this method uses measured pollution

concentrations y at location s as the response variable and

land use types x within areas around location s (called

buffers) as predictors of the measured concentrations (see

Figure 3). Regression mapping provides a practical approach

for the assessment of exposure to traffic-related pollution

(Briggs et al., 1997; Briggs, 2000; Lebret et al., 2000). The

method entails the use of least-squares regression modelling

to predict pollution surfaces based on pollution monitoring

data and existing exogenous independent variables.

Application All the studies reviewed have been conducted

in European cities at an intraurban scale. Two studies (Briggs

et al., 1997; Lebret et al., 2000) were part of the Small Area

Variation in Air pollution Health (SAVIAH) Project that

examined traffic-related air pollution in four European cities

(Amsterdam, Huddersfield, Prague, Poznan). A revised

model described by Briggs (2000) investigates traffic-related

air pollution in four UK urban areas (Huddersfield,

Hammersmith and Ealing, Northampton, and Sheffield).

Using similar regression techniques, a study by Brauer et al.

(2003) compared traffic-related PM2.5 air pollution models in

multiple European cities. Technique has been applied to

assess health effects with positive associations simililar to

those found in other traffic pollution studies (Brauer et al.,

2002).

In the SAVIAH study (Briggs et al., 1997, Briggs, 2000;

Lebret et al., 2000), the independent variables used for the

prediction of mean NO2 were road traffic volume, land-use
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type, and altitude. The relationship between the response

variable and the predictors was tested for reliability from a

small sample survey. A series of 8–10 reference sites were

placed in each area in the SAVIAH study for validation.

Briggs et al. (1997) reported good predictions for the mean

annual NO2 concentrations with coefficient of determination

(R2) values ranging from 0.79 to 0.87.

In keeping with the type of analysis used for land use

regression, the study by Brauer et al. (2003) compared

multiple regression analyses for PM2.5 filter absorbance

and concentration regressed against a number of traffic and

population variables in several communities in the Nether-

lands, Germany, and Sweden. Using two sets of independent

variables, they performed separate regression analyses.

The first set of regressions used variables that were compiled

exclusively through a GIS system, with the second adding

variables to the first that were not easily obtained within

a GIS framework. These variables were information gathered

in the measurement-site questionnaire and included informa-

tion on sampling height, street type, canyon, and type

of sampling site; that is, street, rural background, and

urban background. The results obtained for the Netherlands,

Munich, and Stockholm in the GIS environment showed

R2 values of 0.81, 0.67 and 0.66 for filter absorbance,

respectively. The alternate model, called their ‘‘best’’

model, included other variables such as traffic sites and

street canyons; it produced comparable results with better

R2 values of 0.90, 0.83, and 0.76. Similar trends were

also seen in the analysis of PM2.5 concentration between

the GIS and the ‘‘best’’ model. They showed that a

multiple regression technique produces statistically reliable

results.

Evaluation The main strength of LUR is the empirical

structure of the regression mapping, which allows adaptation

to local areas without additional monitoring or data

acquisition. It also assists in methods that identify areas

requiring more intensive monitoring through the installation

of additional stations (Kanaroglou et al., 2003). Compared

to some of the methods reviewed below, this method also has

relatively low cost. The limitation of this method arises from

its area-specificity, even though, as Briggs (2000) has

shown, it is possible to pool effects into a random effects

framework within areas of relative homogeneity of land use,

meteorology, and vehicle mix.

The limits of this type of extrapolation become apparent

when moving to study areas with much different land use and

topography. Figure 4 illustrates the surface produced by

applying Briggs (2000) Amsterdam regression coefficients

from a close facsimile of Canadian land use classification to

the Hamilton area. The resulting surfaces had virtually no

spatial variation except around major highways, overpre-

dicted in most areas, and produced poor correlation with

measured data from government monitoring sites. Although

extrapolation may be possible within similar geographic

settings, that is, from urban areas with similar land use and

transportation characteristics, a dense monitoring network of

samples is usually required. This necessitates primary data

collection with all the attendant problems noted with

interpolation.

As with Brauer et al. (2003), this method can be applied to

other pollutants with a suitably dense monitoring network,

but the chance of collecting information on all relevant

copollutants seems low due to cost and logistical problems. If

investigators rely only on NO2 because of the cost

Figure 3. Elements of a land use regression model showing monitoring
locations for NO2 as the response variable and land use characteristics
within buffers as the predictor variables.

Figure 4. Land use regression pollution model using the Amsterdam
coefficients from Briggs (2000) in Hamilton; note the lack of
variability in the predicted ambient concentrations.
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advantages from passive sampling with Ogawa (Rupprecht &

Patashnik Co., Inc., Albany, NY, USA) or Palmes diffusion

monitors, the question of whether NO2 is a reasonable proxy

for other pollutants arises. This issue has received scant

attention in the literature, and the few studies that have

examined copollutant correlations at the intraurban scale

indicate only limited success (see below, under hybrid

models, for more discussion).

Dispersion Models

Overview Dispersion models generally rely on Gaussian

plume equations (Bellander et al., 2001). They use

assumptions about deterministic processes making use of

data on emissions, meteorological conditions, and

topography in estimating spatial exposure estimates of air

pollution concentrations. Recently, dispersion models have

been used in conjunction with GIS. This combination has

allowed both information from empirical monitoring systems

and data concerning the population distribution in the study

area to be analysed together. With the addition of data

concerning the topography of the study area, a model of the

road network, and traffic observations, a more realistic

representation of the problem is formed. These models have

been used for different kinds of pollutants such as TSP

(Bartonova et al., 1999), nitrogen oxides (NOx) (Bartonova

et al. 1999; Bellander et al., 2001; Nyberg et al., 2000), SO2

(Nafstad et al., 2003) and CO (Benson, 1989).

In fulfilling model assumptions, dispersion models require

pollution, meteorological, and emission data. Data on

pollution concentrations, also referred to as background

concentrations, are usually obtained from government

monitoring stations near the study area and are used for

model calibration (Clench-Aas et al., 1999b). Meteorological

data provide information about the wind speed, wind

direction, ambient temperature, solar radiation and atmo-

spheric stability class (Gualtieri and Tartaglia, 1998).

Emission data are classified into two categories, depending

on the type of source: First, stationary sources account for

air pollution coming from local sources such as home heating

and industries. For each emission point a number of release

parameters are collected (e.g., annual mass emissions, stack

height, diameter, temperature, vertical emission velocity) in

addition to information on facility type and location (Hruba

et al., 2001). Emissions data are collected on an annual basis,

or by patterns of emissions that reflect hourly rates. Second,

mobile sources include traffic emissions and re-suspended

particles. Traffic emissions are usually estimated by traffic

counts and standard emission factors for different types of

vehicles, speeds, and gradients of the road network. After the

data requirements have been met and the model calibrated,

the dispersion model computes the pollution levels for the

desired time interval with further data updates being

infrequent (e.g., changing existing point sources).

Application The study by Hruba et al. (2001) used the U.S.

EPA’s Industrial Source Complex F Long Term Model to

derive ambient particulate air pollution estimates from 151-

point sources and two residential area sources for Banska

Bystrica in Central Slovakia. These ambient pollution values

were assigned to the subjects of the Central European Study

on Air Pollution and Respiratory Health in Children

(CESAR) study (CESAR, 1998; Pattenden et al., 2000).

Gualtieri and Tartaglia (1998) presented a method for air

pollution estimation from cars based on the estimation of

traffic flows within each link of a road network. The emission

model calculates emission concentration levels of typical

traffic-related pollutants by means of Gaussian dispersion

model estimates.

In an extensive study, also focused on traffic-related

pollution, Clench-Aas et al. (1999b) developed an integrated

exposure monitoring system. It expanded on an existing air

quality monitoring system using dispersion modelling. The

model integrates emission, meteorological and topographic

data to estimate exposure at different levels (population,

individuals short-term, individual long-term). The dispersion

model EPISODE (Walker et al, 1999) was a part of that

system, which was developed at the Norwegian Institute for

Air Research. The EPISODE model was used as a basis for

the exposure calculations of NOx, NO2 and PM as the model

is capable of assessing the effects of different traffic diversion

measures on health and well-being over the Oslo area. In a

study also using the dispersion model EPISODE, Bartonova

et al. (1999) quantified the exposure to NOx and PM in

central Oslo, Norway. Estimates represented pollutants

concentrations (i.e., NOx and PM) at a 1-km grid resolution.

Anderson et al. (1996), using the Integrated Model of

Urban Land-use and Transportation for Environmental

analysis (IMULATE) estimated CO, NOx and hydrocarbon

(HC) emissions from passenger cars for all the links of the

transportation network in Hamilton, Ontario. This is

accomplished by first estimating traffic volumes at the link

level and then using MOBILE5C through an automatic

interface to translate traffic volumes into emissions. MOBI-

LE5C is the Canadian equivalent of the emissions inventory,

average speed model MOBILE5, developed by US Environ-

mental Protection Agency. More recently, Potoglou and

Kanaroglou (2002) introduced the emissions output of

IMULATE to the California Line Source Dispersion model

(CALINE), developed by the Department of Transportation

in California (Benson, 1989). A GIS module was used to

display the resulting continuous emissions surface. For

illustrative purposes we provide the estimated emissions per

link, emissions at CALINE receptor locations, and kernel

density estimates of ambient concentrations (see Figure 5a

and b for emissions per link and receptor locations from

CALINE model, respectively).

The study by Nyberg et al. (2000) used the AIRVIRO

dispersion model developed by the Swedish Meteorologic
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and Hydrologic Institute (SMHI, 1993) to assign NO2

exposures and assess elevated risks to lung cancer. Bellander

et al. (2001) suggests that dispersion models may be useful in

the assessment of retrospective individual exposure of air

pollution. In their study, reconstructed emission data of

traffic and heating facilities were used with the AIRVIRO

dispersion model (SMHI, 1993) to estimate NO, NO2 and

SO2 for three points in time (1960, 1970 and 1980). These

dispersion calculations were performed at four different grid

resolutions. The grid resolution was higher in the city centre

and decreased as it moved towards the countryside. In a

follow-up study, with a population of 16,209 men with

assigned SO2 and NO2 levels from 1974–1998 developed at

the Norwegian Institute for Air Research (Gram et al.,

2003), Nafstad et al. (2003) sought to find the relationship

between assigned SO2 exposure and lung cancer.

Outcome and Links to Health Effects Hruba et al. (2001)

found no association between long-term exposure to TSP

levels and asthma symptoms, but prevalence of nonasthmatic

respiratory symptoms and hospitalizations was associated

with elevated TSP.

Lung cancer was not significantly associated with modelled

NO2 in the study by Nyberg et al. (2000) when controlling

for a number of covariates; however, elevated point estimates

were found for some analyses. Bellander et al. (2001)

estimated intraurban pollutant concentrations with the

dispersion model and extrapolated these over time to estimate

NO2 and SO2 pollutant levels for all years between 1955 and

1990. Using 10,800 geocoded addresses, the researchers

assessed individual-level pollution exposure averages, based

on indices of complex air pollution mixtures derived from

house heating and traffic pollution sources. Estimated NO2

values from their model correlated very well (r¼ 0.96) with

site measurements. They concluded that while this technique

has practical application for epidemiological studies, it might

be limited to study sites that possessed historical traffic and

other emission data.

In the follow-up study of 16,209 men, Nafstad et al.

(2003) found an increased risk of lung cancer (RR¼ 1.08,

95% CI: 1.02–1.15) for a 10mg/m3 increase in NO2 at the

home address. SO2 was not found to exert an influence on

increasing risk of developing lung cancer (RR¼ 1.01, 95%

CI: 0.94–1.08). They concluded that urban air pollution may

increase the risk of developing lung cancer.

The resulting receptor locations, derived from the Ander-

son et al. (1996) study’s emission estimates, were visualized

by applying a weighted kernel estimate to the CALINE

output to show a density of emissions in part per billion per

square kilometre, as shown in Figure 6. Alternatively, the

CALINE results could be interpolated as described above

under geostatistical models. In either case, these exposure

estimates could be assigned to subjects in a health study.

Similarly, the results of the Gualtieri and Tartaglia (1998)

study showed that their method could be used for pollution

exposure classification.

In Norway, Clench-Aas et al. (1999c) designed the

Dynamic Individual Air Pollution Exposure model (DI-

NEX) by applying the EPISODE model to calculate

concentration of NO2 and SO2 in an industrial area. These

estimates were used to evaluate exposure at the individual

scale. By using an hour-by-hour diary over two, 2-month

periods, each of the 260 participants provided information

used in the calculation of his/her exposure. This can be a

useful technique in the estimation of personal exposure.

Using the same dispersion as Clench-Aas et al. (1999c),

Bartonova et al. (1999) identified the level of exposure over

the residential areas in Oslo, Norway, and showed that high

levels of hourly exposures were encountered near high traffic

centres.

Evaluation Dispersion models have the potential advantage

of incorporating both spatial and temporal variation of air

Figure 5. (a) MOBILE5.C-derived emission estimates using IMU-
LATE traffic assignments for Hamilton. (b) Receptor locations
created by CALINE4 for Hamilton with concentrations of CO.
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pollution within a study area without need for dense

monitoring networks (Bartonova et al., 1999; Clench-Aas

et al., 1999a). Pollution concentrations vary substantially in

space and time due to differences in source strength (i.e.,

traffic flow), wind velocity, atmospheric stagnation, and

topography. All these features can be accounted for within

the dispersion framework by including point and line source

models for both mobile and stationary sources. Additionally,

the models can be applied at different spatial scales. At the

urban scale, dispersion models have been used to describe air

pollution episodes, while at the regional scale they are used to

assess the transfer of pollution. These models can therefore

provide high-resolution analysis of patterns in health

outcomes and environmental factors, and they can be

applied with relatively minor alterations for different study

areas (Bellander et al., 2001; Hruba et al., 2001).

The disadvantages of these models include (a) relatively

costly data input; (b) unrealistic assumptions about disper-

sion patterns (i.e., Gaussian dispersion); (c) a need for

extensive crossvalidation with monitoring data; and (d)

temporal mismatches in data can possibly cause estimate

errors. That is, for nontraffic and heavy diesel traffic-related

emissions, a dichotomous relationship often exists between

the sample interval for the two major inputs to the dispersion

model F emissions and meteorology. Emissions data from

point or area sources are often reported as annual emission

rates, while for heavy diesel traffic, the patterns of flow do

not tend to be accurately characterized by hourly traffic

counts. In synergy with the inherent variability of meteor-

ological data, which are commonly collected at the hourly

time-scale, the unmeasured variability in emission sources

may induce significant exposure error. Additionally, an over-

riding obstacle in the implementation of these models is the

high level of required programming and GIS expertise

coupled with fairly expensive hardware requirements.

Integrated Meteorological-Emission Models

Overview Within integrated meteorological-emission

(IME) models, meteorological and chemical modules are

coupled together to simulate dynamics of atmospheric

pollutants (Nicholls et al., 1993; Vogel et al., 1995; Scire

et al., 1997; Byun et al., 1999; Chen and Dudhia, 2000;

Pearson and Fitzgerald, 2001; Frohn et al., 2002; Tilmes

et al., 2002). In these models, meteorological data are

provided to the chemistry modules at every time step of the

simulation. It is not necessary that chemistry modules feed

back to meteorological modules (two-way coupling) because

chemistry may have a minor impact on meteorological

variables. IME models are useful for areas that do not have

comprehensive observations to define characteristics of the

key meteorological fields required for air quality application.

Details of the information obtained from a coupled

meteorological–chemistry model depend on the model

physics, input data, grid resolution, and sophistication of

land surface schemes (Otte, 2001; Yin et al., 2001).

Given their high implementation cost and data require-

ments, IME models have not been used for studies

attempting to link air quality to health. Yet, they have

considerable potential, especially for areas with large

populations, where relatively small air pollution risks may

exert large and high secondary pollutant levels burdens of

illness and mortality. This section overviews each of the three

modules and evaluates the overall potential of these models

to be used in health-linked studies. IME models typically

consist of three modules: meteorological, chemistry trans-

port, and visualization and analysis.

Application The meteorological module provides a

description of atmospheric conditions such as air motion,

temperature, barometric pressure fields, cloud cover, and

precipitation. These atmospheric variables serve as inputs to

the chemistry module. This component is critical because it

derives the transport and dispersion of pollutants in the

atmosphere. A meteorological module also requires initial

and boundary conditions, which are provided from observed

or simulated data fields. In general, meteorological modules

can be grouped into three types: diagnostic, dynamical and

four-dimensional data assimilation models (Seaman, 2000).

Diagnostic models analyse observations taken at discrete

points in time and space. They can also be designed to

include the effects of topography. The most widely used

diagnostic models are CLAMET (Scire et al., 1997) and

ATMOS1 (Davis et al., 1984). Meteorological fields from

dynamic prognostic models can also be the initial input for a

diagnostic model.

Dynamic models integrate the nonlinear hydrodynamic

equations of atmospheric motion in a numerical framework.

Its components may include the following: (a) multiple-nest

capabilities (b) nonhydrostatic dynamics that allow the

Figure 6. Pollution concentration computed using a kernel estimate of
CALINE4 receptor locations for Hamilton.
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model to be used at a higher resolution (30 s or 1 km);

(c) multitasking capabilities on shared-memory or distrib-

uted-memory machines; (d) the ability to handle complex

terrains; and (e) several physical parameterizations that

model the major physical processes. These can account

for cloud cover, radiation at the planetary boundary

layer, radiation at the surface layer, and precipitation.

Optimal model settings for a particular area are determined

using available observed data. The most commonly

used dynamic meteorological model in air quality applica-

tions is the Fifth Generation Mesoscale Model (MM5: Grell

et al., 1994; Chen and Dudhia, 2000; Dudhia et al.,

2000) from Penn State University/National Center for

Atmospheric Research (PSU/NCAR) and the Colorado

State University Regional Atmospheric Modelling System

(CSU-RAMS: Pielke et al., 1992; Nicholls et al.,

1993). Some recently developed dynamic models suitable

for air-quality application include the University of Oklaho-

ma’s Atmospheric Regional Prediction System (ARPS) (Xue

et al., 1995), U.S. Navy’s Coupled Ocean-Atmosphere

Mesoscale Atmospheric Prediction System (COAMPS)

(Hodur, 1997), Canadian Mesoscale Compressible Commu-

nity Model (MC2: Benoit et al., 1997) and Global

Environmental Multiscale (GEM) model (Cote et al.,

1998). The US NCAR, National Oceanic and Atmospheric

Administration (NOAA), and a number of government and

university scientists are developing a next-generation mesos-

cale forecast model and assimilation system, called Weather

Research and Forecast (WRF) system (http://wrf-mode-

l.org). The system will provide a framework where the

ecosystem, chemistry, and dispersion model are directly

coupled to the meteorological model. It will enable real-time

and predictive capabilities that will help find the fate and

transport of pollutants in intraurban environments. In this

way, air quality issues can be studied in combination with

time activity patterns far more accurately than with the other

models reviewed.

Four-dimensional data assimilation (FDDA) models

combine the best features of diagnostic and dynamic

approaches by integrating a numerical model that includes

observed data throughout an integration period (Shafran

et al., 2000). The propagation of errors in FDDA models is

constrained by allowing observations to be distributed in

space and time.

The second type of module implemented in the IME

modelling approach is the chemistry transport module. It

includes parameters regarding emissions into the atmosphere

and their subsequent transport (dispersion). The strength of

these emissions depends on meteorological conditions and

socioeconomic activities in the area of interest. Several types

of emission sources may be under consideration in the area of

interest, such as point sources (factory stacks), line sources

(road traffic), and distributed sources (emission from an

entire city or from a natural ecosystem).

The transport or dispersion component of the IME

accounts for various physical and chemical processes that

transform and distribute atmospheric pollutants; it is closely

coupled with the meteorological module. There are three

generations of transport modules. The first deals with

tropospheric air quality and with simple chemistry at local

scales using a Gaussian plume formulation (Reynolds et al.,

1973). The second covers a broader spectrum of pollutants

and scales ranging from local to regional to urban (McRae

et al., 1983; Tesche, 1983; Carmichael et al., 1986). The third

generation models handle multiple pollutants simultaneously

with scales reaching the continental stage, incorporating

feedback mechanisms between chemical and meteorological

components.

The capability for visualization and analysis is an

important part of IME models supplied by the third module

by providing the ability to plot data. In the visualization and

analysis module, 3D animation and a graphic user interface

(GUI) are becoming increasingly popular. Apart from the

three major modules mentioned above, many specific models

use alternate modules/programs to generate and prepare

geophysical and meteorological data fields or extend specific

modelling capabilities. Examples of IME modelling frame-

works include United States’ CALPUFF (Scire et al., 1997)

and MODELS-3 (Byun et al., 1999) that have been coupled

to mesoscale dynamic meteorological models such as MM5

and RAMS.

Evaluation IME models require high-end computational

facilities, sophisticated software and highly qualified and

experienced personnel for their implementation and

operation. These requirements make their use a costly

endeavour. Weighed against these costs are the benefits of

dynamic modelling capabilities that simulate a myriad of

possible exposure scenarios and the capacity to incorporate

chemical transport and fate. Included in the dynamic

modelling capabilities is the ability to represent complex

pollutant pathways that lead to secondary pollutants, that is,

ozone and secondary particles. This allows for more precise

estimates of the likely pollution mix and its potential

association with health outcomes.

Under specific circumstances, problems arise with the

creation of an exposure data set. The output of these models

is given at receptor locations which represent a quantity of

pollution in location within sub areas of the larger study

zone. Creating a usable exposure data set means interpolating

the receptor locations between points on an array. If the

array has a low resolution with few receptor locations

accuracy may be greatly reduced. When points in the array

are far apart and one of few receptor location lies near a point

on the array, a localized interpolation artefact may be

produced that resembles a large pollution source. As the

number of receptor locations and points in the array are

increased, the accuracy and inherent variability in the
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pollution can be better estimated with the interpolated

pollution dataset, but in most cases the uncertainty embodied

in the estimates also increases with the number of receptor

locations.

More specifically, each of the three types of meteorological

modules has its associated advantages and disadvantages.

Diagnostic models are inexpensive to operate and require

little specialized training. The major disadvantages include

incomplete process representation, poor representation of

airflow, and large observed data requirements. Disadvan-

tages also include accumulation of errors over time, limited

temporal coverage (up to a few days), and a highly complex

system that requires extensive training. In contrast, the

advantages of dynamical models include the potential for

resolving regional and local-scale atmospheric circulation

with no requirements for an extensive observation network.

FDDA models have the advantage of including accurate

meteorological data fields over a longer model integration

period. This reduces the propagation of errors in a given time

period, in contrast to dynamical models, making them more

accurate for time periods greater than 48 h. However, the

extensive computational resources and training required to

implement the FDDA model type becomes its major limiting

factor in comparing the three different model types.

Although promising, our review revealed that IME models

have not been widely used for studies attempting to link air

quality to health. The most considerable barriers to wide-

spread implementation in the health field are the associated

development time and intensive data inputs required. In

addition, the 1-km grid resolution may be too coarse for air

pollutants that vary at the local scale such as SO2, NO2,

NOx, ultrafine particulate matter, and CO; these pollutants

can have concentration gradients over 50–100m distances.

Finally, the intensive use of computing resources and the

need for expertise in meteorology and climatology may be

problematic for health scientists who are often unfamiliar

with the physical sciences.

Hybrid Models

Overview The hybrid models reviewed are those that

combine personal or regional monitoring with other air

pollution exposure methods. The primary objective of the

papers reviewed here was to compare or validate results from

exposures assigned from modelling of ambient exposure with

the use of monitoring at differing scales (i.e., personal and

regional monitoring).

Application with Personal or Household Monitoring Most

studies were conducted at intraurban scales in European

cities, although one study was conducted in San Diego (CA,

USA; Liu et al., 1997). There are four studies that use

personal monitoring methods in conjunction with fixed

outdoor stations to compare their difference in derived

health outcomes (Liu et al., 1997; Kramer et al., 2000;

Mukala et al., 2000; Gauvin et al., 2001). In these studies,

personal air samplers are attached to the subjects’ clothing

daily at a specific time for the duration of the data-collection

period. Clench-Aas et al. (1999a) estimated hourly exposure

for each day based on a dispersion model, location and

supplementary information provided in a daily diary. Using

personal exposure measurements and daily time activity

patterns, Zmirou et al. (2002) calculated a traffic-density

index as a time-weighted average of traffic density-to-road

distance ratio.

Application with Regional Monitoring Hoek et al. (2001)

focused on exposure estimation by evaluating contributions

at different scales. Long-term mean exposure to NO2 and

Black Smoke (BS) were assumed to be a function of three

components: regional background, urban concentration, and

local variation due to traffic. The regional background

concentration was estimated by the inverse distance

weighting interpolation method with use of data from a

national monitoring network. Supplementary pollution from

urban sources were also predicted through a regression model

relating the degree of urbanization based on address density

to the long-term averages of NO2 and BS, an optical measure

of airborne particulates, similar to the coefficient of haze

(CoH), used in North America (Hoek et al. 2001). Finally,

the distance to major roads is used to estimate the local traffic

contributions of NO2 and BS. Another study by Hoek et al.

(2002) estimated total exposure from measured regional and

urban background concentrations, and an indicator of

distance lived from major roads. Individuals living within

100m of a freeway and within 50m of a major road were

included in the buffer analysis.

Outcome and Links to Health Effects When comparing

the exposure significance in these studies, we observed that

personal monitoring generally provided lower concentration

measurements than fixed monitoring stations. Yet personal

monitors may provide a more accurate exposure estimate as

indoor concentrations contribute more significantly to

exposure than outdoor concentrations, as most people

spend approximately 90% of their time indoors (Levy et al.,

1998; Leech et al., 2002). Zipprich et al. (2002) showed that

up to 68% of the variation in personal exposure to NO2

could be explained by incorporating an indoor measurement

into statistical models. This can be expected since the indoor

measurement can account for factors within the home that

may change NO2 concentrations.

Mukala et al. (2000) reported that median personal

measures of NO2 were lower than median measures collected

by other measures outside day-care centres, and Liu et al.

(1997) reported that outdoor ozone (O3) concentrations are

four to five times higher than personal observations in the

Alpine area of California. While NO2 personal exposures
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were different across cities, they were significantly weaker

than ambient background measures in three French metro-

politan cites in the research performed by Gauvin et al.

(2001). For children living in urban areas, Kramer et al.

(2000) found that personal NO2 concentrations were 50%

lower than measurements from fixed stations.

These empirical models employed a mixture of multiple linear

(Liu et al., 1997; Mukala et al., 2000; Gauvin et al., 2001) and

logistic regressions (Kramer et al., 2000) to link exposure

estimates to health outcomes. School children were the primary

study groups with the exception of the work done by Liu et al.

(1997), where children and adults were treated as a collective

group. Children that lived in homes with gas stoves had greater

NO2 personal exposures than children who lived in homes with

electric stoves, although no significant difference existed between

gas heaters and other heating appliances (Gauvin et al., 2001).

Kramer et al. (2000) found that atopy was related to outdoor

NO2 concentrations, but not to personal measures in 317 school

children (age 9 years). Also, Mukala et al. (2000) indicated a

significant relationship between personal exposure measures and

coughing in 162 children (ages 3–6 years). They also reported a

positive, yet statistically insignificant trend between non-

personal exposures and coughing. Significant findings in this

study were limited to winter months. No significant associations

were found for the summer period. To obtain an accurate result

of health outcomes, researchers adjusted for confounding effects

in the empirical models. The health outcomes used in these

studies were diverse, and not surprisingly, the confounding

variables of significance were also heterogeneous. Hoek et al.

(2002) reported a near doubling of cardiopulmonary mortality

near major roads and highways. Thus far, this is the only

published study to employ proximity road buffers as a predictor

of mortality, and the results require further confirmation from

other places.

Evaluation Using the hybrid modelling method has the

advantages of measurement validation. Yet, the difficulty in

implementing hybrid models depends on the combination of

models being used. If a hybrid model consists of measures

from existing stationary ambient monitoring sites and from

personal devices as seen in Mukala et al. (2000), it can be

applied with relative ease. When ambient data are unavailable,

this method becomes more difficult to implement. The

pollutants under study can also influence the cost and

feasibility of this method. As an example, passive NO2

monitors are relatively inexpensive to implement, while real-

time particle monitors are prohibitively expensive.

Discussion

In this section, we discuss our key findings by way of a

comparative evaluation. Table 1 compiles the application of

different models into their respective category (model type

and scale of use). The integrated meteorological emission

models (IME) are based on regional meteorological models

and are therefore only suited to larger scale efforts. The

potential exists for application to the within community scale

for IME models by downscaling to a 1-km2 resolution, but

to date these models have only been applied at the between

community scale. Four of the six classifications of models

have been used in health effects assessment. Health effects

were detected, although negative findings also appeared.

Respiratory health outcomes have been tested most fre-

quently, although cardiopulmonary, cancer, and reproduc-

tive outcomes have also been assessed. There has been limited

effort to compare and evaluate formally the relative accuracy

of results produced by the existing air pollution models

(Collins, 1998; de Hoogh et al., 2002). Such an evaluation

requires that the models be implemented with the same

population over the same spatiotemporal domain.

Empirical comparisons

Collins (1998) calculated an annual mean of NO2 at eight

monitoring locations that were placed permanently during

consecutive survey periods. She then calculated mean

pollution values from 80 monitoring sites, but excluded

those eight permanent locations. This enabled comparisons

of the NO2 pollution surfaces estimated using kriging, hybrid

and land-use regression techniques with the 80 readings at

these same eight cross-validation locations. Her analysis

revealed that land-use regression techniques predicted

measured levels most accurately with an R2 of 82%,

compared to kriging and a hybrid approach with R2 of

44% and 63%, respectively. Threshold pollution values from

80 monitoring sites were also compared internally for the

three exposure metrics. Specifically, pollution averages in

residential areas for each model were compared to this

threshold value. The results were presented in the form of a

percentage of residential area found to be above the estimated

threshold level. Kriged values resulted in 35% of residential

area above the threshold value. Regression and hybrid

modelled values were 17% and 9%, respectively. A wide

range in maximum and minimum values within residential

areas was also apparent for each model, with kriged models

estimating a range of 22–42mg/m3, regression models

estimating 23–58, and 18–82mg/m3 for hybrid models. The

difference between the minimum and maximum provides

information with regard to the level of data smoothing,

whereby the smaller ranges indicate greater smoothing.

de Hoogh et al. (2002) compared modelled concentrations

of PM10 and NO2 to commonly used source–activity

indicators based on traffic and road characteristics. For

validation purposes, monitored pollution values were used

from locations within the study cities. The exposure measures

were applied to postal code locations and tested in two major
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urban areas in the UK. Percentages of postal codes classified

in the same exposure quintile were calculated for all exposure

measures. In comparing the proximity measure and regression

approach 30% were classified in the same quintile, while 26%

of the sites were similarly classified for proximity and

dispersion approaches. When comparing regression and

dispersion approaches for NO2, only 30% of the postal codes

were classified within the same quintile. The highest compar-

ability was observed at 68% for dispersion modelled NO2 and

PM10. Obvious differences were found between the exposure

measures; however, modelled and monitored concentrations

showed consistently strong correlations for both pollutants.

This correlation implies that modelling can provide a reliable

assessment of long-term NO2 and PM10 concentrations. These

comparisons emphasize the potential differential impacts

related to the choice of air pollution exposure measures,

especially if used as a basis for related health effects.

Comparative evaluation

Although these comparative studies fill an important gap, the

emphasis on correlations between various methods leaves

many other important evaluation criteria unaddressed. Thus,

we offer a synthesis of the various methods based on

comparative criteria that may assist others in deciding as to

which method suits the needs of their specific study design

best. Table 2 summarizes the results of this evaluation. Each

row of the table corresponds to one of the models. From the

top to the bottom row of the table, models are arranged in

terms of increasing complexity with respect to the suitability,

requirements, and the cost for their implementation. Each

column corresponds to a different evaluation criterion; the

first class of criteria concerns the matching of the method

conceptualization to theory and the utility of the model/

methods to respiratory studies. Specific requirements, such as

the amount of data, the need for data updates and the

software/expertise required, form a second class of criteria.

The third class of criteria includes the overall implementation

cost and marginal benefit of implementing one model relative

to a base model.

The overall implementation cost is measured in three parts:

(a) equipment cost, which includes the cost of monitoring

devices (e.g., personal monitors, monitoring tubes), as well as

computer hardware, which can be taxing for some of these

models; (b) many of these models require sophisticated

Table 1. Studies categorized by model type and scale of application.

Model Level

Between community Within community Used in health

effects assessment?

Proximity van Vliet et al. (1997), Ciccone et al. (1998),

Wilkinson et al. (1999), Venn et al. (2000, 2001),

Wyler et al. (2000), Janssen et al. (2001), Hoek

et al. (2002), English et al. (1999), Jerrett et al.

(2002), Mahesswaran and Elliot (2003),

Langholz et al. (2002)

Yes

Interpolation Mulholland et al. (1998) Jerrett et al. (2001a,b), Finkelstein et al. (2003),

Pikhart et al. (2001), Ritz et al. (2000), Abbey

et al. (1999)

Yes

Land use regression Briggs et al. (1997), Lebret et al. (2000), Briggs

(2000), Brauer et al. (2002), Brauer et al. (2003),

Yes

Dispersion Hruba et al. (2001), Clench-Aas et al. (1999b),

Walker et al, 1999), Bartonova et al. (1999),

Anderson et al. (1996), Potoglou and

Kanaroglou (2002), Benson (1989),Bellander

et al. (2001), SMHI (1993), Gualtieri and

Tartaglia (1998), Nyberg et al. (2000), Nafstad

et al. (2003)

Yes

Integrated Meteorological

Emissions

Nicholls et al. (1993), Vogel et al. (1995),

Scire et al. (1997), Byun et al. (1999), Chen

and Dudhia (2000), Pearson and Fitzgerald

(2001), Frohn et al. (2002), Tilmes et al.

(2002)

Possible application scale with downscaling of

models to 1 km2

No

Hybrid: personal or regional

exposure plus one of models

above

Liu et al. (1997), Kramer et al. (2000), Mukala

et al. (2000), Gauvin et al. (2001), Clench-Aas

et al. (1999c), Zmirou et al. (2002), Hoek et al.

(2001, 2002)

Yes
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Table 2. Example of binary classification within a buffering scheme for proximity models.

Model Theory

concept

match

Limitations

to health studies

Data requirements Need for

updated data

Software/expertise Overall implementation

cost

Marginal

benefit

Transferability

Proximity based Low Crude exposure

estimates

Traffic volumes Low GIS Equipment: low Base case Low

Distance from line source

Questionnaire

Statistics Software: low

Personnel: medium

Geostatistical Medium Depends on

density of the

monitoring network

Monitoring measurements Low GIS Equipment: medium Transferability Low

Spatial statistics Software: medium Error structure of estimate

Personnel: low

Land Use regression Medium Depends on density of

observations

Traffic volumes Medium GIS Equipment: medium Transferability Medium

Land-use Statistics Software: medium Error structure of

estimateMeteorology Monitor experts Personnel: medium

Monitoring measurements

Dispersion Medium Extensive inputs Traffic volumes Medium GIS Equipment: high Emphasis on process High

Unrealistic assumptions

about pollutant

transport

Emissions from point sources Statistics Software: high

Meteorology Monitor experts Personnel: medium

Monitoring measurements Dispersion software

Topography

Integrated meteorological

emission

Medium Coarse resolution Traffic volumes High GIS Equipment: high Emphasis on

Process

Medium

Emissions from point sources Statistics Software: high

Meteorology Monitor experts Personnel: high

Monitoring measurements

Topography

Hybrid (personal monitoring

& one of the preceding

methods)

High Small and Questionnaire Depends on

combination

Personal monitor experts Equipment: high Depends on

combination

Low

biased sample

Depends on

combination

Personal monitoring data Survey design Software: *

Other depending on

combination

Depends on combination Personnel: *

*Depends on combination
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computer software, such as visualisation, GIS and spatial

statistical packages, which may add significantly to the

implementation cost of the study; and (c) personnel costs,

which may include survey specialists, monitoring equipment

experts, spatial analysts, and computer programmer/ana-

lysts.

The marginal benefit evaluates all models relative to the

‘‘proximity models,’’ which are taken here as the base case.

The time required for the implementation of a model is also

an important criterion that may be included in this class.

Model implementation time varied significantly in the

examined literature, depending on data availability and

collection method. In some instances, especially when the

design of the study required that data be collected for

different seasons of the year, the implementation time of the

project was long (i.e., greater than 2 years). Because of the

lack of a common basis for comparison between projects, we

have decided against including model implementation time as

one of the evaluation criteria. The last criterion we include in

Table 2 under the term "transferability" is the possibility of

transferring the results of a model or an estimated statistical

model to other locations. In this case, high transferability

means that the model can provide reliable results if

implemented with minor adjustments at a different location.

Proximity models usually provide a relatively crude but

quick evaluation of the impact that traffic pollution has on

respiratory symptoms. The main disadvantage of such

models is that parameters affecting the dispersion and

physicochemical activity of pollutants are not considered.

These models are limited to the statistical investigation

between traffic activity and the possible risk of illness or

death. Statistical and GIS tools are often used to assess traffic

volume on the relevant road network and the distance of

subjects from the road network. In addition, survey data are

collected from the population under study. The time to

develop a proximity model is generally short if the necessary

data are available. These studies may have to be repeated at

different time periods to capture seasonal variation in traffic.

Geostatistical models can be implemented in conjunction

with a dense, well-distributed, monitoring network. These

models allow the estimation of pollution concentration over

several time intervals, but this is limited only by the number

of available measurement periods. Often the estimated

surface of a pollutant over a study area is used in conjunction

with socioeconomic data and population density to assess

risk for a specific study group. Improved hardware, spatial

statistics software, and appropriate expertise are mandatory

for the implementation of a geostatistical model, thus

increasing the cost relative to a proximity model.

Land-use regression models are relatively inexpensive to

implement and can provide reliable estimations of traffic-

related air pollution when adequate land use, transportation,

and pollution monitoring data are available. In most cases,

greater reliability is achieved when the number of observa-

tions over the study area is increased. These techniques may

also employ of independent variables known to significantly

affect the concentration of pollutants. Such variables are

land-use, elevation, and traffic conditions. The cost can be

higher than both of the previous methods, especially if one

seeks a dense set of observations in traffic flow and other

parameters.

Dispersion models and IME models are considered more

sophisticated and reliable than the previous models, but are

more expensive to implement. These models can be used at

the regional and the intraurban scale. They require a

substantial amount of data on emissions and meteorology.

Improved management tools, specialized software (GIS,

dispersion software, integrated software) and computer

hardware are capable of handling, storing and processing

these data. Furthermore, there is a need for specialized

personnel in GIS, statistics, mathematics, and computer

science. Thus, the cost of implementation is significantly

higher than with previous models. The compensation comes

in the form of a better representation of the process under

study. The main difference between dispersion and integrated

models is that the latter incorporates a chemical and

meteorological module to simulate the dynamic mobility of

atmospheric pollutants in a multi-step simulation process. As

a result, integrated models demand increased computing

power and specialized personnel. A further drawback of such

models is that their results have a coarse spatial resolution,

making their application to exposure studies problematic

(usually a 1-km prediction grid is the maximal downscaling

available). It is possible to improve on the resolution of the

results only at the expense of significantly increased data

requirements and associated computer processing power.

Personal monitoring offers the most direct way of

measuring the exposure of subjects to air pollutants. The

drawback of such models, however, is the high cost of

implementation and the associated small number of observa-

tions that tends to produce sample biases. Only specific types

of subjects will carry monitors and record their daily activities

for a relatively prolonged time period. For this reason,

personal monitoring is often used as a complement to one of

the other model types, creating what we have termed ‘‘hybrid

models.’’ These hybrid models are associated with a high

theory-to-concept match because they allow direct exposure

measurements. In the absence of subjects willing to partake in

a personal monitoring program the use of regional monitor-

ing in conjunction with another modelling schema allows the

researcher to create additional validation for their model (i.e.,

combining two or more modelling results).

Future directions

In reviewing the current state of knowledge for intraurban air

pollution exposure assessment, we found a growing emphasis
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on increasingly sophisticated land use, dispersion, and

integrated meteorological models. These have now entered

the mainstream of air pollution health effects assessment, and

they will probably replace less robust buffering and proximity

methods over the next 5 years, except perhaps in early phases

of previously unexplored health effects.

Beyond refinements in these models, we also emphasize a

need for more research in three areas: (1) remote sensing

models, (2) mobility or activity–space analysis, and (3)

personal monitoring to crossvalidate estimates and improve

understanding of the role that measurement errors play in

risk assessment models.

First, the use of remote sensing for exposure assessment

appears to be a promising avenue for future research,

particularly in low-income countries that may lack the

resources to implement extensive ground monitoring pro-

grams. This method of exposure assessment usually relies on

high-resolution satellite observations in combination with

existing fixed-site monitoring stations. The method deter-

mines the aerosol optical thickness by classifying consistent

spectral images with pollution cover over urban areas and

then cross validating and reclassifying values with ‘‘virtual

stations’’ that have similar land use and transportation

characteristics (Ung et al., 2001). Our review identified only a

few of these studies, and none had been used specifically to

assess health effects or inform regulatory decisions. Although

promising, these remote sensing methods remain formative

and often require simplifying algorithms and ground truth

data to reduce computation demands and increase accuracy

of pollution estimate (Kanaroglou et al., 2002). Currently,

the methods available seem better able to detect the presence

or absence of pollution, rather than classifying what type of

pollution is present. The methods also lack an accepted

means of assessing errors in estimates. Despite these

limitations, the relative availability of remote sensing data

and improvements in computational techniques will con-

tribute to practical and methodological advancements,

meriting future use in health effects studies.

Second, while researchers have expended considerable

effort on characterizing the spatial and temporal distributions

of air pollutants at the intra-urban scale, much work remains

in understanding the role of individual mobility in condition-

ing exposures. Time–activity studies have illuminated rela-

tively consistent patterns of activity between different

populations, with individuals spending an average of about

66% of their time at their residential location (Leech et al.,

2002), but these studies have not done enough to investigate

the crucial question of ‘‘where’’ individuals are the rest of the

time. Do they commute long distances? Do they tend to have

social activities at short or great distances from their homes?

Does the time they spend outside tend to coincide with

temporal peaks in air pollution (e.g., late day rush hour

ozone levels and children playing after school)? These and

other related questions remain largely unanswered. Poten-

tially, collaborations with transportation experts who specia-

lize in the analysis of ‘‘activity spaces’’ may lead to rapid

answers for these questions (Axhausen et al., 2001).

Third, to assess external validity of these new measures,

more cross-validation against personal exposure measure-

ments will be needed. Many of the personal monitoring

studies have assessed personal measures against central

monitors with two important results: (a) individual personal

monitoring estimates correlate poorly with central monitors

(Gauvin et al., 2001), but (b) when these personal estimate

are averaged on a daily basis, they correlate highly with

central monitor estimates (Mage et al., 1999). Thus, while

central monitors may supply reasonable proxies for time-

series assessments over the entire population, they probably

provide poor estimates of personal exposure for chronic

studies. Answering this second question through comparisons

of exposure metrics against personal monitoring at the

intraurban scale will contribute to chronic health effects

assessment by disentangling the role of measurement error

for different subjects in a given health study. A need also

exists to compare different exposure estimates within the

context of actual health outcome studies. This, too, will

increase knowledge on how exposure measurement error may

influence health effects assessment.

The overarching question of what methods are most

appropriate for which circumstance cannot be fully answered

until the issues of time–activity and measurement error are

better understood. In cases where the key question relates to

the size of the effect, more sophisticated hybrid models may

be warranted. For example, because researchers have already

demonstrated significant associations between relatively

simple metrics such as road buffers and childhood respiratory

health outcomes, the question now becomes, ‘‘are the effect

sizes accurate.’’ More refined models of exposure may shed

light on this question, given the bias toward the null effect

induced by measurement error. Researchers may also be

interested in which pollutant in the complex mixture around

roadways exerts the health effects when basic relations have

already been demonstrated. Similarly, more refined models

may be necessary to assess health effects in subgroups.

Limited power to detect effects in these groups may

necessitate lower exposure measurement error. As mentioned

earlier, for more formative hypotheses, basic models may

provide a reasonable starting point, but a risk of a false

negative finding cannot be easily dismissed because error may

bias toward the null or increase the variance on the dose

response function (Lebret, 1990). In early studies, researchers

may find it useful to focus on whether they observe a dose–

response function based on distance from source or other

empirical experiments that may give clues about possible

associations.

Much of the desirability of a given model for a specific

study or health outcome will also depend on available or

potential data supports. Advanced dispersion and integrated
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emission models (IEMs) will likely perform poorly when

requisite data support are lacking. Although these models

have theoretical elegance, researchers may find more robust

results from land use regression or geostatistical models when

the data support for IEMs is weak. IEMs in particular may

take some time and simulation or validation testing to

produce reliable and valid results as the intraurban scale.

Again, these data considerations impede overall conclusions

beyond general advice that, as with many spatial models, the

sophistication of the model must match the resolution of the

data. While this may seem obvious, we believe cautionary

advice is warranted given the potential of many models to

produce visually appealing results and exposure maps that go

well beyond the available data accuracy or resolution.

In sum, the advent of new GIS and modelling methods for

intraurban exposure assessment has emerged at a time when

the interest in chronic health effects assessment has increased.

The coincident timing of these two events will probably lead

to rapid increases and advances in methods for assessing

exposure at the intraurban scale. Hybrid models combining

different methods with personal monitoring appear well

suited to overcoming the conundrum of achieving population

representative samples while understanding the role of

exposure variation at the individual level. Remote sensing

and activity–space analysis will complement refinements in

pre-existing methods, and the field of exposure assessment

may help to reduce scientific uncertainties that now impede

policy intervention aimed at protecting public health.
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