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Abstract 

An optimum design of low-cost housing offers low-income urban inhabitants great opportunities 

to obtain a shelter at an affordable price and acceptable indoor thermal conditions. In this paper, 

the design and operation of a low-cost dwelling were numerically optimized using a simulation-

based approach. Three multi-objective cost functions including construction cost, thermal comfort 

performance and 50-year operating cost were applied for naturally ventilated and air-conditioned 

buildings. Thermal environment inside the house was controlled and assessed by two thermal 

comfort models. Optimization problems which consist of 18 design parameters and 6 ventilation 

strategies were examined by two population-based probabilistic optimization algorithms (particle 

swarm optimization and hybrid algorithm). Optimum designs corresponding to each objective 

function, differences in optimal solutions, energy saving by the adaptive comfort approach and 

optimization effectiveness were outlined. The optimization method used in this paper shows a 

considerable potential of comfort improvement, energy saving and operating cost reduction.  

Keyword: low-cost housing, optimization, life cycle cost, HVAC thermal setpoint, adaptive 

comfort 

1. Introduction 

The applications of simulation-based optimization have been considered since the year 80s and 

90s based on the rapid growth of computational science and mathematical optimization methods. 

However, most researches in building engineering which combined a building energy simulation 

tool with an optimization ‘engine’ have been published in the late 2000s although the first efforts 

were found much earlier. A pioneer study in optimization of building engineering systems was 

presented by J.A. Wright in 1986 when he applied the direct search method in optimizing HVAC 

systems (Wright 1986). Genetic algorithms were then introduced and applied in the optimization 

of building envelopes, HVAC systems and controls (Wright 1994; Wright et al. 2002). In 2001, 

Wetter (Wetter 2001) first introduced the optimization programme GenOpt with different 

optimization algorithms that significantly contributed to optimization solutions in building 

engineering. GenOpt was originally targeted to the building performance simulation (BPS) 

community hence it offers architects and engineers many advantages in their simulation work. 

Another optimization toolkit which has similar optimization capabilities to GenOpt is Dakota 

(Adams et al. 2009). Dakota provides a framework for single, multi-objective or surrogate-based 

optimization, parameter estimation, uncertainty quantification, and sensitivity analysis to the 

simulation-based community, but its usage requires advanced programming knowledge. Some 

other optimization programmes, e.g. BEopt, TopLight, MATLAB, GoSUM, LIONsolver… have 

also been developed, providing many more appropriate methodological frameworks to the 

simulation-based optimization community.  Consequently, numerous optimization researches have 

been carried out, aiming to optimize building designs, passive strategies, energy consumption, 

HVAC controls, construction costs, life cycle costs, environmental impacts... Nevertheless, 
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optimization researches related to low-cost housing (LCH), which are actually essential in most 

developing countries, have rarely been mentioned.    

The demand for housing in developing countries is still very high. In 2008, 72.2% of the existing 

housing was semi-permanent or temporary houses; and 89.2% of the poor did not have a 

permanent shelter in Vietnam (Central Population and Housing census Steering Committee 2010). 

Therefore, LCH has recently been among top strategies for resolving urban housing issues in 

developing countries, where the rural-urban migration and population booming have generated a 

huge pressure on the sustainability of urban development. Due to cost constraints, LCH usually 

exploits natural ventilation as the major cooling strategy and indoor air quality control. HVAC 

systems are rarely used, thus indoor comfort is mainly achieved by passive designs and strategies. 

Also, developing countries often lie in hot humid regions where the climate has significant 

influences on the design of LCH. Hence, construction costs as well as thermal comfort are the 

matters of great concern, rather than the issue of building energy consumption.  

The principal purposes of this study were: (1) to explore the capability of simulation-based 

optimization in solving design problems of a low-cost dwelling with specific boundary conditions; 

(2) to examine the role of thermal comfort criteria on the optimized results and the effect of an 

adaptive comfort model on building energy consumption; and (3) to derive design 

recommendations for LCH in response to various climatic conditions.      

Three sites in Vietnam, including Hanoi (21°N latitude), Danang (16°N latitude) and Hochiminh 

city (10.5°N latitude), were considered as case studies. Danang and Hochiminh city have hot 

humid climates with monthly average temperature mostly above 24°C. Hanoi has a humid 

subtropical climate with hot humid summers and dry cold winters (average temperature in January 

is 16.4°C) (Institute of Construction Science and Technology 2009). These three cities represent 

the climates of the North, the Centre and the South of Vietnam. The present paper discusses the 

process through which optimal combinations of passive designs and strategies for a low-cost 

house were achieved using the optimization method. During this process, design parameters and 

various objective functions to be optimized will be established based on typical characteristics of 

LCH. The optimization method and the results of this study are essential references for architects 

to develop this housing type in developing countries.         

2. Optimization methodology 

2.1 Methodologies 

To optimize building costs and thermal comfort performance by a simulation-based method, an 

appropriate dynamic thermal simulation tool, namely EnergyPlus 6.0 (Crawley et al. 2001) (only 

version 6.0 or later can perform the life cycle cost analysis), was used in this study. EnergyPlus 

was directly coupled with GenOpt - an optimization programme (Wetter 2009) - to minimize 

different combined objective functions. In some cases, each simulation may require several 

minutes to complete if the building model consists of many thermal zones and systems. 

Consequently, the direct coupling between a building simulation tool and an optimization ‘engine’ 

would be very time-consuming and other approaches should be used (e.g. surrogate-based 

optimization or artificial neural network). In our case, the building model is rather simple and does 

not require much simulation time; the direct coupling is therefore considered suitable and yields 

most accurate information of optimal solutions. Fig.1, which was slightly modified from the origin 

in GenOpt manual (Wetter 2009), shows how EnergyPlus is coupled with this optimization 
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programme. After each iteration, EnergyPlus is regularly restarted by a batch file (*.bat) 

embedded in GenOpt.  

 

Figure 1: Coupling principle between GenOpt and EnergyPlus that evaluates the objective 

function 

In naturally ventilated buildings, the air flow rate has a great influence on the indoor thermal 

environment. Allard (Allard 1998) reported that most thermal simulation models applied a very 

simplistic approach to calculate ventilation flow rates and they may result in questionable thermal 

predictions. In air-conditioned buildings where ventilation is completely governed by a 

mechanical system, such an approach can be acceptable. Conversely, such an approach is possibly 

inadequate if the building is fully or partly ventilated by natural mechanisms (Allard 1998). 

Sensitivity analyses on BPS also showed that the air flow rate is one of the most sensitive 

parameters which have maximum effects on the output (Hopfe and Hensen 2011). To accurately 

predict the air flow rate of each simulated time step using hourly outdoor wind conditions, the 

airflow network model in EnergyPlus was coupled with the thermal simulation module. This 

airflow network consists of a set of nodes (thermal zones) linked by airflow components through 

openings and voids. The variables are node’s pressures and the linkage between nodes is the air 

flow rate. Inputs of the airflow network model include: hourly wind speed and direction; building 

location, building azimuth and shape; window sizes and positions, discharge coefficient, window 

crack infiltration and control schedule. Further detailed descriptions of this airflow network model 

can be found in (Walton 1989) and his related works. More sophisticated models, e.g. CFD or 

zonal modelling, are currently available, but out of scope of this study.  

2.2 Assumptions 

In BPS, the reliability of simulated results varies from software to software and would be 

dominated by user’s experience. Each version of EnergyPlus was extensively tested using industry 

standard methods (Office of Energy Efficiency and Renewable Energy (U.S. Department of 

Energy) 2012). However possible uncertainties and errors may occur if an EnergyPlus model is 

not calibrated. The present study therefore assumed that the housing model can produce reliable 

results with no user calibration. Also, since one-year weather files of three sites were used, the 50-

year life cycle cost analysis assumed that the impacts of climate change during 50 coming years 

are small and can be neglected.   

3. Description of the Case study and parameters considered in the optimization 

3.1 Simulation model of the house and assumptions 
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A simple model of a low-cost dwelling was established as shown in Fig.2. It is a rectangular 

parallelepiped - single thermal zone with four glazed windows on its four facades. Doors were 

intentionally omitted as their thermal properties were assumed to be similar to those of external 

walls. All internal partitions were considered as internal thermal mass. These partitions were not 

modelled in the airflow network, but their effects on airflow obstruction were estimated in the 

discharge coefficient of external windows. The floor area and height of the house are fixed at 100 

m
2
 and 3.3 m, respectively.  Only the building width and length are varied correspondingly. The 

house is assumed to be located in an urban area and occupied by maximum four people who share 

one gas stove (maximum heat dissipation of 250 W). The maximum lighting power is 1 kW. More 

details of the model are shown in Table 2 and Table3. It is worthy of note that optimal solutions of 

this simple model given by the optimization will indicate most appropriate design principles and 

parameters that can be  considered the references for more sophisticated buildings. 

 

Figure 2: Building model with variable building dimensions and openings 

Two cases will be investigated. In the first case - NV case, the house is naturally ventilated (NV). 

The air flow rates are calculated by the airflow network model based on the hourly wind speed and 

the corresponding status of the openings. The outdoor wind speed profile follows an exponential 

function of height (exponent value 0.14) and the atmospheric boundary layer thickness is 270 m, 

similar to the terrain category 3 in ASHRAE handbook (ASHRAE 2009). In this case, windows 

and other openings are controlled by the occupants using some simple ventilation strategies. Table 

3 shows six possible ventilation strategies which are commonly used in hot humid climates. The 

discharge coefficient of external windows was decided with care through a series of sensitivity 

analysis on this housing model. The results revealed that the simulation outputs and optimization 

results of this study were not sensitive to the variation of the discharge coefficient between 0.4 and 

0.8. Based on the values found in the literature (Allard 1998), the discharge coefficient of 0.6 was 

selected. This value is slightly lower than a typical discharge coefficient for large openings due to 

the obstruction effect of internal partitions. 

During the optimization process, some input variables of the airflow network model (building 

width/length ratio, area of each window and building orientation) changed from iteration to 

iteration. These changes were automatically updated in optimization input files by implementing 

some constraint functions in GenOpt (see variable constraints in Table 2). Furthermore, these 

changes continuously resulted in a secondary change of wind pressure coefficients on building 

facades. Each time the building configuration changes, the wind pressure coefficient 

corresponding to each wind direction must be recalculated. For rectangular building model in 

EnergyPlus, this heavy task can be done automatically by using the “surface average calculation” 

method proposed in (Swami and Chandra 1988).   
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To control the operation of the airflow network, the predicted number of air changes per hour 

(ACH) in the house was examined. Fig. 3 shows predicted ACH of the model under different 

ventilation schemes. It can be seen that the ACH followed random fluctuations that tend to 

‘mimic’ the effect of natural wind. Abrupt changes of the ACH at the start and the end of the 

summer period showed the impact of the ventilation scheme on the ACH. The predicted ACHs of 

this study were compared with experimental values of some similar cases as shown in Table 1. 

According to the range of ACH in these experiments, the predicted values of this study under all 3 

ventilation schemes were rather reasonable. Hence, it can be said that the coupling of the airflow 

network model and the thermal simulation was able to provide adequate results of the airflow in 

the NV model.        

 

Figure 3: Variations of predicted ACH in a year generated by the airflow network under the 

climate of Danang   

Table 1: Mean predicted ACH of the airflow network model and results of some other 

experiments on natural ventilation  

 Mean outdoor 

wind speed 

(m/s) 

Measured 

ACH 

Predicted 

ACH 

References 

Full day ventilation 1.75  3.25 This study 

Day time ventilation 1.90  1.36 

No ventilation  1.99  0.41 

Isolated multi-zone detached house with 3 

small openings in Austin, Texas, USA 

3.5 7.45  (Lo and Novoselac 

2012) 

Multi-zone townhouse in Reston, Virginia, 

USA, winter and summer ventilation scheme 

2.51 

Not reported 

0.62 

1.25 

 (Wallace et al. 2002)  

Isolated multi-zone detached house in Porto, 

Portugal  

< 2.00  6.00 by 

AIOLOS 

(Allard 1998) 

Multi-zone townhouse in Louvain la Neuve, 

Belgium 

1.50 

1.80 

2.15 

4.10 

 

Apartment in Catania, Italy – single side 

ventilation 

2.60 2.30  

Isolated two-zone detached house in Lyon, 

France (total volume: 68.64 m³) 

1.60 1419 kg/h 1521 kg/h 

by COMIS  

In the remaining case – AC case, the house is air-conditioned (AC) by an Ideal Loads Air System 

(ideal auto-sized HVAC system). This electric system works at 100% efficiency and is able to 

supply, without limit, the necessary heating or cooling supply air to meet heating or cooling load 

of the zone. A crucial parameter that needs to be correctly set is the infiltration rate in the AC case. 
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EnergyPlus provides a method which relates the air infiltration rate with outdoor conditions as 

follows:  

 2* ( * * * )i schedule outdoor outdoorQ I F A B T C V D V      (1) 

where: 

Q is air infiltration rate (m
3
/s), 

Ii is reference infiltration flow rate (m
3
/s). This value is varied during optimization process (Initial 

value is 0.1), 

Fschedule is hourly schedule, prescribed by user (from 0 to 1), 

 ∆T (Tzone -Tout) is difference between indoor and outdoor temperature (ºC), 

Voutdoor is hourly outdoor wind speed (m/s), 

A, B, C and D are coefficients, prescribed by user, 

Typical values for these coefficients are still subject to debate (Ernest Orlando Lawrence Berkeley 

National Laboratory 2010). Based on some parametric runs, we assumed (Fschedule, A, B, C, D) = 

(1.00, 0.00, 0.05, 0.18, 0.00). These coefficients produce a value of 0.026 m
3
/s (0.75 ACH) at ∆T 

of 2ºC and wind speed of 2 m/s, which corresponds to a typical summer condition in Hanoi. 

3.2 Criteria for thermal comfort assessment and setpoints for HVAC system   

Thermal comfort standards are required to help architects and building engineers to define an 

indoor environment in which a major part of building occupants will find thermally comfortable. 

The ‘steady state’ thermal comfort theory proposed by Fanger (Fanger 1970) in the early 1970s 

has become the foundation of international thermal comfort standards such as ISO 7730 (ISO 

2005) and ASHRAE 55 (ASHRAE 2004) and has widely been used (Nguyen et al. 2012). 

However, field surveys have indicated that Fanger’s comfort model has failed to predict 

occupants’ thermal sensation in NV buildings in hot climates (Nguyen et al. 2012) where 

occupants often adapt themselves to the changes of outdoor weather by changing their behavior, 

adjusting their expectations and preferences. Recently, the adaptive comfort approach has 

emerged as an alternative method of thermal comfort assessment in such situations. Actually the 

adaptive comfort approach does not reject Fanger’s comfort theory, but it helps to clarify the 

mechanism through which people adapt themselves to the surrounding environment as well as 

provide a supplemental method to assess different thermal environments and situations. Due to the 

significance of these comfort theories, this study attempts to examine both of them in the light of 

simulation-based optimization. 

There has been many adaptive comfort models developed during the last two decades. The model 

developed for hot humid South-East Asia (Nguyen et al. 2012) was chosen because it was based 

on the data collected within this region. This model defines the indoor comfort temperature Tcomf 

as a linear function of the mean monthly outdoor temperature Tout (Institute of Construction 

Science and Technology 2009) as follows: 

 0.341 18.83comf outT T   (2) 

The comfort range for 80% acceptability is nearly ± 3°C around Tcomf .  

In the NV case, thermal performance of the house during a year is evaluated by mean Predicted 

Percentage Dissatisfied ( PPD ) index (Fanger 1970) (if Fanger’s comfort model is used) or Total 

Discomfort Hours (TDH) (if the adaptive comfort model is used). TDH is defined by total time of 

a year when indoor temperature is beyond the comfort range of equation (2). These long-term 
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assessments comply with the methods A and D in ISO 7730 (ISO 2005). To provide inputs for the 

calculation of PPD, hourly clothing insulation, work efficiency and activity of the occupants, 

indoor air velocity were estimated and assigned in EnergyPlus input files.     

In the AC case, two types of cooling and heating setpoints for the HVAC system were examined, 

namely ‘fixed setpoints’ and ‘adaptive setpoints’. The ‘fixed setpoints’ were 20ºC and 26ºC. 

These values were intentionally chosen to maintain PPD index (Fanger 1970) of the indoor 

environment in most cases not to exceed 20% (80% acceptability, correspondingly). The ‘adaptive 

setpoints’ are the upper and lower boundaries of the comfort range defined by equation (2). 

Energy efficiency of the AC house is evaluated by the total energy consumption which is the sum 

of HVAC, equipments and lighting electricity.  

The purpose of thermal comfort optimization is to minimize mean PPD or TDH. PPD is given in 

EnergyPlus outputs, but TDH is not included because current EnergyPlus versions do not support 

any user’s adaptive comfort models (the adaptive models of ASHRAE 55–2004 and EN15251 are 

newly accessible in EnergyPlus version 7.0). To implement the adaptive comfort model of South-

East Asia into this tool, the paper proposed a method as described below: 

- In each AC or NV thermal zone, an HVAC system was installed. In the NV thermal zone, this 

system was set at an extremely low capacity (heating and cooling air flow rates were 0.0001 m³/s) 

so that its heating and cooling effects do not have any influences on the zone and its energy 

consumption is negligible. 

- By scheduling monthly heating and cooling setpoints, the adaptive setpoints were established. 

- ‘Time heating setpoint not met’ and ‘Time cooling setpoint not met’ were called from the output 

dictionary of EnergyPlus (these outputs are only available if the thermal zone is equipped with 

HVAC systems). This output will give TDH or total time of a year temperature of the zone does 

not meet the criteria of the adaptive comfort model.  

The purposes of these different types of setpoints were to examine their effects on the building life 

cycle cost (energy consumption) and on optimization results. It is necessary to emphasize that the 

percentage of satisfied occupants did not decrease if adaptive setpoints were imposed in AC office 

buildings (McCartney et Nicol 2002).   

3.3 Parameters of designs and strategies considered in the optimization 

As the present paper aims to optimize the passive designs of low-cost housing, 21 design 

parameters and 1 operational parameter were considered by a careful selection. All parameters to 

be optimized, variable constraints as well as their assigned values during the optimization process 

are listed in Table 2 and 3. All costs are given in USD. 

Table 2: Numerical variables and their design options (continuous variables) 

Design parameter Simulation 

variable   

Min 

value 

Initial 

value 

Max 

value 

Step 

size 

Number 

of case 

Building azimuth* [degree] x1 -90 30 90 30 7 

Azimuth of building long axis [degree] x2 0 120 180 30 - 

Building width [m] x3 4 6 10 2 4 
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Building length [m] x4 10 16.67 25 - - 

Building shape ratio [dimensionless] x5 0.16 0.36 1 - - 

South Window overhang size [m] x6 0.2 0.4 0.8 0.2 4 

North Window overhang size [m] x7 0.2 0.4 0.8 0.2 4 

East Window overhang size [m] x8 0.2 0.4 0.8 0.2 4 

West Window overhang size [m] x9 0.2 0.4 0.8 0.2 4 

South window width (height is fixed at 1.5m) [m] x10 1 2 4 1 4 

North window width (height is fixed at 1.5m) [m] x11 1 2 4 1 4 

East window width (height is fixed at 1.5m) [m] x12 1 2 3 1 3  

West window width (height is fixed at 1.5m) [m] x13 1 2 3 1 3 

External wall absorptance [dimensionless] x14 0.3 0.6 0.9 0.3 3 

Reference infiltration flow rate (AC case) [m
3
/s] x15 0.05 0.1 0.15 0.05 3 

Window crack infiltration (NV case) [kg/s-m] x15 0.002 0.004 0.006 0.002 3 

Variables constraints 

x2 - x1 = 90  

x3 * x4 = 100 

x3 / x4 = x5 

*The angle between true North and the normal vector of the North-facing facade; clockwise is positive 

Table 3: Categorical design options and strategies (discrete variables) 

Design 

parameter 

Descriptions of design parameter Name in 

EnergyPlus 

Item cost 

($/m
2
) 

Simulation 

variable   

Number 

of case 

External 

walls 

110mm two-side plaster brick wall  100 20 x16 4 

290mm two-side plaster brick wall with air 

gap 5cm 

101* 26.5 

two-side plaster brick wall with 2cm central 

insulation 

102 33 

two-side plaster brick wall with 4cm central 

insulation 

103 38 

Window 

type 

Sgl Clr 6mm (single clear glazing 6mm) 200 45 x17 3 

Sgl LoE (e2=.2) Clr 6mm (single clear glazing 

6mm with loE film) 

201* 70 

Dbl Ref-A-L Clr 6mm/13mm Arg (double 

reflective glazings with 13mm Argon) 

202 220 

Roof type 

Two-side plaster 120mm heavy RC 300 45 x18 3 

Two-side plaster 120mm heavy RC with 2cm 

insulation 

301* 52 

Two-side plaster 120mm heavy RC with 4cm 

insulation 

302 58 

Ventila-

tion 

strategy** 

(only for 

NV case) 

Daytime ventilation summer 404 - x29 6 

Daytime ventilation summer and mild seasons 405* - 

Night Ventilation Summer 406 - 

Night Ventilation Summer and mild seasons 407 - 

Full day Ventilation summer 408 - 

Full day Ventilation summer and mild seasons 409 - 

Floor 

types 

Concrete Slab tiled floor NO insulation 500 34 x20 3 

Concrete Slab tiled floor with 2cm insulation 501* 39 

Concrete Slab tiled floor with 4cm insulation 502 43 

Thermal 

mass 

Thermal mass 110mm thickness 600 20 x21 3 

Thermal mass 210mm thickness 601* 26 

Thermal mass 410mm thickness 602 36.5 

*: Initial value; **: Ventilation means all openings are opened 
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Total candidate solutions of the search-space were 7*6*4
8
*3

8
 ≈ 1.8*10

10
 cases. If parametric runs 

are used and each simulation takes approximately 3 minutes to complete, it takes 103077 years to 

examine all the search-space. It is obvious that the parametric runs cannot be applied in such 

extremely large search-space and the optimization becomes the only possible approach.    

4. The choice of optimization algorithms for the present problem 

The demand of a search-method that works efficiently on a specific optimization problem has led 

to various optimization algorithms. In most engineering optimization problems using the 

simulation-based approach, objective functions (simulation outputs) are generally non-linear, 

multi-modal, discontinuous and hence non-differentiable (Wetter and Polak 2004). Some 

algorithms developed for solving such problems fail to draw a distinction between local optimal 

solutions and global optimal solutions, and consider the former as final solutions to the problem. 

As an example, if the simulation program contains empirical assigned values (e.g. wind pressure 

coefficient), adaptive solvers with loose precision settings or iterative solvers using a convergence 

criterion, such as those in EnergyPlus, they may cause the cost function to be discontinuous. 

Hence gradient-based optimization algorithms, e.g. the Discrete Armijo Gradient algorithm (Polak 

1997), that require smoothness of the cost function usually fail to reach the global minimum 

(Wetter and Wright 2004). As a result, the choice of optimization algorithm for a specific problem 

is crucial to yield the greatest reduction. 

In this study, the problem is considered complex as it has 18 independent and 3 dependent 

variables to optimize. Wetter and Wright (Wetter and Wright 2004) compared the performance of 

9 optimization algorithms and reported that for a detailed optimization problem, the hybrid 

algorithm (a combination of the particle swarm optimization (Eberhart and Kennedy 1995) and the 

Hooke-Jeeves algorithm (Hooke and Jeeves 1961)) achieved the biggest cost reductions but 

required a little more simulations than the standard genetic algorithm. The hybrid algorithm is a 

combination of the direct search optimization family and the stochastic population-based 

optimization family. The hybrid algorithm is capable to work efficiently since it performs a global 

search by the particle swarm optimization (PSO) and the Hooke–Jeeves algorithm then refines the 

search locally. This combination increases the possibility to get close to the global minimum 

rather than only a local one (Wetter and Wright 2004). On the other hand, as the PSO does not 

require the derivative of cost function because it is a population-based probabilistic optimization 

algorithm, it accepts both continuous and discrete variables of the cases in question. Therefore, the 

hybrid algorithm was first selected for comparative tests while the PSO was also considered as a 

reference algorithm during the optimization. Details of these algorithms can be found in GenOpt 

manual (Wetter 2009). The settings of these algorithms were identified through small trials and 

were almost by default (PSO: cognitive acceleration = 2.8, social acceleration = 1.3, maximum 

velocity gain = 0.5, constriction gain = 0.5; Hooke-Jeeves: mesh size divider = 2, initial mesh size 

exponent = 0, mesh size exponent increment = 1, number of step reduction = 4) except that we 

increased the number of particles per generation to 50 to match with the large search-space. The 

population size of 50 is expected to be large enough to allow the search to process from the first 

generation while it results in acceptable optimization time. The settings of the Hooke-Jeeves 

algorithm allow the optimization to refine the mesh of the continuous variables (parameter ‘step 

size’ indicated in Table 2) after the last evaluation of the PSO. These settings provide good 

optimization results with both standard benchmark functions and real-world applications using 

EnergyPlus as being tested in (Kampf et al. 2010). The number of generation was fixed at 200 for 

all optimizations. Our observations indicated that most optimization runs reached convergence 

after around 100 to 140 generations. 
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With the same settings, results of the comparative tests showed that the PSO needs much more 

time than the hybrid algorithm whereas the optimal solutions of the hybrid algorithm usually 

outperform those of the PSO. For these reasons, the hybrid algorithm was selected for the 

subsequent optimization. 5. The establishment of objective functions 

The choice of a building design solution is a non-linear multi-objective optimization process, 

hence it often requires a trade-off among conflicting design criteria, e.g. the initial construction 

cost, the operating cost, and occupant’s thermal comfort (Wright et al. 2002). The most simplistic 

approach, namely “a priori’, is to assign a weight factor to each criterion, and then the objective 

function will be simply the weighted sum of the criteria. As an example, we consider an 

optimization problem of a thermal zone which consists of a construction cost function fc(X) and a 

comfort performance function fp(X). These functions could be integrated into a single objective 

function by assigning two weight factors (a and b) or considering the second as a penalty function 

of the first:  

 
        ( ) * ( ) * ( )

    ( ) ( )* ( )

c p

c p

f X a f X b f X

or f X f X f X

 


 (3) 

Another approach is to use the concept of Pareto optimality in which a set of trade-off solutions 

(Pareto set) is examined and appropriate solutions are then determined. In the present paper, the 

first approach was used to combine two design criteria into one objective function which consists 

of the construction cost and comfort performance; or the construction cost and the operating cost. 

We established two objective functions for the NV case and one for the AC case, based on two 

thermal comfort models: Fanger’s PMV-PPD model (Fanger 1970) and the adaptive comfort 

model (Nguyen et al. 2012) described earlier in section 3.2.  

In the NV case, operating costs of different solutions is assumed to be similar; we, therefore, 

minimize the objective function I which consists of the construction cost and the comfort 

constraints: 

 
4       ( ) ( )*(1 )    

or   ( ) ( )*( / 8760)

c

c

f x f x PPD

f x f x TDH

 


 (4) 

where 

fc(x) is total construction cost of the house, 

          is mean PPD of a year of the thermal zone in question. The exponent value of 4 was 

determined after a few trials and errors and provided necessary comfort constraint on the 

construction cost. 

To find the best combination of various design parameters in response to the climates, the 

objective function II was established to optimize occupant’s thermal comfort: 

 
       ( )     

or    ( )

f x PPD

f x TDH




 (5) 

In the AC case, since the indoor thermal environment is controlled by the Ideal Loads Air System, 

we therefore optimize the life cycle cost of the house which consists of the initial construction cost 

and the 50-year operating cost. The demolition, transportation and waste management cost are 

assumed to be similar in all solutions. Thus the objective function III is the building Life Cycle 

Cost (LCC), defined as: 
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 50( ) ( ) ( )c of x f x f x   (6) 

where 

fc(x) is initial construction cost (present value), 
50( )of x  is total 50-year operating cost (present value). 

Using LCC provides an approach to combine the initial construction cost and the projected future 

costs into a single measure, called the “present value” (Ernest Orlando Lawrence Berkeley 

National Laboratory 2010). To include this into the analysis in EnergyPlus, we assumed an 

inflation rate of 2,5% per year, a discount rate of 1%, an electricity price escalation rate of 0.6% 

(the prices of electricity and various fuels do not change at the same rate as the inflation). Other 

annual maintenance cost, replacement cost and salvage cost are also included in the analysis (see 

Table 4). The current electricity price in Vietnam is 0.0728 $/kWh (EVN 2011). The initial 

construction cost is calculated by EnergyPlus based on estimated component costs (Ministry of 

Construction of Vietnam 2011) as listed in Table 3. Other secondary construction related costs, 

e.g. miscellaneous cost, design and engineering fees, contractor fee, contingency, permission, 

bonding and insurance, commissioning fee, equipment cost, foundation cost… are also taken into 

consideration in the analysis as shown in Table 4.  

Table 4: Other costs and fees 

Item name Value Frequency 

Equipment cost (estimated) 1,800 $ Initial cost 

Foundation cost (estimated) 2,500 $ Initial cost 

Miscellaneous cost (estimated) 10 $/m2 Initial cost 

Design and engineering fees 5% Initial cost 

Contractor fee 5.5% Initial cost 

Contingency fee 10% Initial cost 

Building permission, bonding 

and insurance 

0.3% Initial cost 

Commissioning fee 0.5% Initial cost 

Maintenance cost 250 $ Every two years 

Replacement cost 400 $ Every 10 years 

Profit from salvage -50 $ Every 10 years 

6. Results and discussions 

In the present study, there were 2 types of thermal comfort criteria used, 3 building sites and 3 

objective functions. Hence there were totally 18 optimization runs. Full details of these 

optimization results are reported in the Appendix (categorized by building locations). For different 

analysis purposes, the Appendix could be categorized in 3 ways: by thermal comfort criteria; by 

building locations or by objective functions. The following sections discuss the findings from 

these results. 

6.1 Effectiveness of the optimization approach 

Fig. 4 shows the process of an optimization through which the optimal cost function III for 

Hochiminh city was found. Compared to the average of the first generation, the optimal design 

presents a reduction of 34.2% of the LCC while it still maintains  a moderate construction price 

(22013 $). It also shows that the PSO in the hybrid algorithm performed a global search and 

quickly reached the potential optimal location. 
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The quantification of the optimization effectiveness needs a reference performance of an existing 

housing model which does not exist in our case. Therefore, the cost function values of the optimal 

solutions found by these optimizations were compared with the average and the best cost function 

of the first generation. The results are shown in Table 5. The average performance of the first 

generation which consists of 64 solutions is considered as a certain solution recommended by 

designers without performing an optimization. The best case of the first generation may be seen as 

the current best practice which reveals an estimation of the minimum reduction by the 

optimization. 

 

Figure 4: Optimization effectiveness of a case in Hochiminh city - graphical assessment  

Table 5: Percentage reduction of objective function value by the optimizations  

Objective function Location Optimal 

solution 

Compared with the first generation 

Best 

solution 

Min reduction 

(%) 

‘Average’ 

solution  

Average 

reduction (%) 

Mean PPD (objective 

function II) 

Hanoi 41.5 46.7 11.1 55.8 25.7 

Danang 33.8 42.1 19.7 57.0 40.7 

Hochiminh 54.4 61.2 11.1 79.1 31.2 

Total discomfort hours 

(objective function II) 

Hanoi 1501 2335 35.7 3388 55.7 

Danang 58 792 92.7 2109 97.2 

Hochiminh  18 970 98.1 3595 99.5 

LCC using fixed setpoints 

(objective function III) 

Hanoi 46405 59136 21.5 90007 48.4 

Danang 47174 59472 20.7 95985 50.9 

Hochiminh 49957 65981 24.3 112945 55.8 

LCC using adaptive 

setpoints (objective function 

III) 

Hanoi 39908 42607 6.3 60561 34.1 

Danang 35047 36940 5.1 51053 31.4 

Hochiminh 34468 36560 5.7 52390 34.2 

The analysis in Table 5 indicates that the optimization method can be seen as an effective decision 

support tool that helps designers in preliminary design stages. The optimization approach 

sometimes reduces the objective cost significantly, possibly up to 99.5%, and potentially provides 
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the optimal solution (or at least, the solutions near the optimum). Compared with the average 

performance of normal designs without optimization, the reductions were no less than 25.7%. The 

minimum reduction varied in a very wide range, but it was no less than 5.1%.  In the NV house, 

the optimization yielded great reductions if the adaptive thermal comfort was chosen as the 

thermal constraint. The optimal houses in Danang and Hochiminh city are nearly comfortable all 

year round without HVAC systems.  

Currently the simulation-based optimization process seems rather sophisticated as it requires 

manual coupling of the optimization programme and the building simulation tool. However, this 

difficulty is expected to overcome soon when the optimization algorithms will be integrated into 

building simulation tools. 

6.2 The role of adaptive comfort setpoints in energy saving 

The optimization using the objective function III was aimed to examine the effect of different 

thermal comfort criteria on building energy consumption through the whole building life cycle. As 

can be seen from Table 5, the adaptive setpoints applied in the HVAC system would offer a 

significant reduction in the building LCC. LLCs of the optimal houses were reduced 14% (case 

Hanoi), 26% (case Danang) and up to 31% (case Hochiminh city), compared with those using the 

fixed-setpoints. These reductions are more significant than many other energy saving measures. It 

can be seen that the benefits given by adaptive setpoints increase from the North to the South 

corresponding to the increase of annual average temperature - from 23.6°C to 25.8°C and to 

27.4°C, respectively. The benefits of adaptive setpoints in buildings in temperate and cold 

climates (e.g. in Netherlands and Finland) were questioned by some studies (Sourbron and Helsen 

2011, Hamdy et al. 2011) as unexpected results were detected. However, in hot climates the 

adaptive comfort theory allows higher acceptable indoor temperatures, thus it tends to reduce 

cooling energy. Earlier studies (Tøftum et al. 2009, McCartney and Nicol 2002) also indicated 

that buildings using thermal setpoints in compliance with the adaptive comfort model may result 

in significant energy savings. Notably, the adaptive thermal setpoints in AC office buildings do 

not interfere with occupant’s thermal satisfactory (McCartney and Nicol 2002). This finding also 

seems true in residential facilities where occupants often have more adaptive opportunities, e.g. 

changing clothing, opening control, activities. Hence the adaptive approach also further questions 

the validity of applying fixed thermal setpoints to a real living environment, especially in hot 

climates. 

6.3 Deviation of optimal solutions found by different thermal comfort criteria 

The results in the Appendix were categorized by the comfort models applied. In general, the 

optimal solutions of these two comfort models were found rather similar although there were a 

few discrepancies as listed in Table 6. These discrepancies were mainly caused by more stringent 

requirements on the indoor surface temperature and humidity of Fanger’s comfort model. More 

ventilation is needed to remove the humidity generated by human occupancies (discrepancy no. 3; 

4; 5) and other measures (no.1; 2; 6) ensure stable surface temperature, especially glazed surfaces.  

Table 6: Discrepancies between the optimal solutions generated by two thermal comfort criteria 

No. Discrepancy  Found in Adaptive comfort model Fanger’s comfort model 

1 Building azimuth  Hochiminh -21° 15° 

2 North and South window 

overhang 

All locations  Small overhang (in most 

cases) 

 Largest overhang (in most 

cases) 

3 North and South window 

width - NV house 

Danang, Hochiminh  Nearly minimum width Varied 
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4 Window crack infiltration - 

NV house  

Danang, Hochiminh Minimum  Maximum  

5 Ventilation strategy  Hanoi, Danang Full day ventilation 

summer only 

Full day ventilation 

summer and mild seasons 

6 Window type - AC house All locations Normal window Best performance (low U-

value) 

Although only a few discrepancies were observed in each city, comfort performances of the 

optimal solutions were contradictory. As shown in Table 5, the optimal PPD  of Hanoi, Danang 

and Hochiminh were 41.5%, 33.8% and 54.4%. This means that none of these houses is thermally 

acceptable. Meanwhile, the optimal TDH of Danang and Hochiminh were nearly perfect (58 and 

18 hours per year, respectively). Hanoi, by any criteria, always needs heating-cooling systems to 

maintain thermal comfort during a year. Our experience about adaptive thermal comfort and 

housing study in hot humid climate indicates that Fanger’s comfort model has failed to predict the 

thermal sensation of occupants living in NV buildings. Fanger’s PMV-PPD model cannot take 

into account complex human interactions with the surrounding environment by changing their 

behaviour and slowly getting adapted by adjusting their expectations and preferences (Nguyen et 

al. 2012). Therefore, this study is in favour of the adaptive comfort approach for the optimization 

of NV buildings.          

6.4 Differences between the optimal NV and AC houses 

 

Figure 5: Optimal combination of variables for the best thermal comfort condition (NV house)  
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Figure 6: Optimal combination of variables for the best Life Cycle Cost (AC house)  

The optimization results in the Appendix were categorized by the objective functions and 

presented in Fig. 5 and Fig. 6. The results of objective function II and III represent the optimal 

designs of the NV and AC houses, respectively. As expected, there were some differences 

between these two housing categories as shown in Table 7. Among these, a few important design 

parameters are contradictory, e.g. building shape and thermal mass. The internal thermal mass is 

only required in the NV case, maybe for night pre-cooling when night ventilation is applied. 

Shapes of the AC house should be square or near square while an East-West long rectangular 

geometry is suitable for the NV house. These indicate that designers should take building 

environmental control methods, e.g. NV or AC, into consideration to propose an adequate design 

in the early stage of a project.  

Table 7: Differences of optimal NV and AC buildings 

Design parameter NV building AC building 

Building shape Long rectangular Nearly square 

North window overhang Almost maximum Varied 

Indoor thermal mass Maximum Minimum 

Window type, external wall type, roof type Best performance (low U-value) Varied 

North and South window overhang Large overhang (in most cases) Small overhang (in most cases) 

The objective function I and II did not give the same solutions because the comfort criteria were 

combined with the construction cost in the objective function I. With the balance between the 

comfort and the investment, the solutions generated by the objective function I seem more 

favourable for low income residents. The objective function III should be used for AC buildings 

while the objective function II seems useful for the design of net-zero energy houses or passive 

houses.  

6.5 General recommendations for each location in response to the local climate 

The results in the Appendix were categorized by building locations to examine the effect of the 

climate on building designs. Fig. 7 shows some basic climate data of three regions. Hanoi has a 

sub-tropical climate with fairly dry cold winters and hot summers, but the lowest temperature 

hardly falls below 5°C. In Danang, the climate is basically tropical monsoon with very short and 

warm winters. The lowest temperatures is often well above 15°C. Hochiminh city has a typical hot 

and humid climate. There are one dry and one rainy season, corresponding to two monsoons 

regimes throughout the year.  



Published in: Journal of Building Performance Simulation, 2014, 7:1, 68-81 
Status: Postprint (Author’s version) 
 

 

Figure 7: Basic climate data of Hanoi, Danang and Hochiminh city         

In all regions, the optimal solution is a combination of: (1) small East and West windows with 

largest overhangs; (2) low thermal absorptance of external walls: bright colour, for example; (3) 

good air tightness; (4) no floor insulation to facilitate heat exchange with the earth; (5) maximum 

thermal mass in NV cases and minimum thermal mass in AC cases; (6) Full day ventilation under 

warm or hot weather; (7) minimum window areas in AC cases. General recommendations for each 

region were also derived. In Hanoi, the house should be nearly square; the building azimuth 

should be within 0° and -7.5° with a moderate or large South window in NV cases, a well-

insulated roof and external walls. In Danang, the house needs short South window overhangs, a 

well-insulated roof; the building shape follows the building types (NV or AC) and the building 

long axis should be shifted to an East-West orientation. The solutions for Hochiminh city are not 

quite explicit because of the disagreement among solutions, thus these should be based on specific 

situations of the project.  

It can be seen that among the optimal solutions, the discrepancies always exist. It is mainly 

because of the contradiction between the cost and the comfort criteria. For example, the objective 

function I found elements at the lowest cost but poor thermal performance that were usually 

rejected by comfort-related objective functions. It reveals that the objective function has a great 

influence on the optimal solution found and thus designers’ decisions.  

7. Conclusion 

This paper fully describes a process to optimize LCH design using the simulation-based 

optimization method. The characteristics of a low-cost dwelling and its operation were reproduced 

by a simplified single-zone thermal model in EnergyPlus. In particular, the airflow network model 

was applied to simulate natural wind driven ventilation in the house. The optimal LCH models 

were carefully examined through 18 optimizations of 3 objective functions, including 2 thermal 

comfort models, 2 building running modes under 3 climates.  

The optimal results generated by the two comfort models were not identical. Based on the results 

of many earlier studies on thermal comfort, this study is in favour of the optimization results given 

by the adaptive comfort model. The adaptive comfort setpoints for HVAC system shows a 

considerable potential of energy saving without any drop in thermal comfort levels through the 
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whole 50-year life cycle of the house. The cost saving in Vietnam depends on the climate and may 

be as high as 14% to 31%, compared with the fixed setpoints. Hanoi, by any criteria, always needs 

air-conditioning systems to maintain comfort during a year whereas Danang and Hochiminh may 

entirely rely on passive designs and strategies. The optimal combinations for the design of LCH in 

each climatic region were also recommended.  

The optimization results show that the optimal designs of a naturally ventilated house and an air-

conditioned one had some differences, and even in a few categories, they were contradictory. 

Therefore, the building environmental control method must be initially considered to create 

adequate proposals in the early stage of the project.  

   

The study also shows the considerable potential of the optimization method in energy saving, life 

cycle cost and comfort improvement. The benefit given by the simulation-based optimization is 

actually remarkable while the computational cost is gradually decreased by advances in 

computational technologies. Since the work to couple EnergyPlus - GenOpt and then to define the 

optimization problems takes only a few hours, the optimization method shows a very promising 

applicability and can yield considerable economic gains. 

In this work, the presence of internal partitions was modelled in the airflow network by assuming 

a reduced discharge coefficient of the external windows. This assumption was however subject to 

some uncertainties because of the fact that the discharge coefficients of large openings found in 

the literature are somewhat inconsistent and that the distribution of internal partitions may vary 

from case to case. In the paper, the predicted air flow rates were qualitatively compared with the 

values of the earlier studies. It is therefore necessary to emphasize that the reliability of this 

approach needs to be validated by more robust methods, e.g. wind tunnel experiments or full-scale 

measurements of air flow rates.  
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Appendix  

All optimization results categorized by building locations (Refer to Table 2 and 3 for details about the parameters x1, …, x21) 

Comfort 

model 

Objective 

function 

Location Optimum 

cost 

x1 x3 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 

Adaptive I Hanoi 5385 0 9.13 0.65 0.35 0.8 0.8 4 1 1 1 0.3 0.002 103 200 302 408 500 600 

II Hanoi 1501 0 7 0.8 0.8 0.8 0.8 2.5 1 1 1 0.6 0.002 103 202 302 408 500 602 

III Hanoi 39908 0 9.88 0.2 0.2 0.8 0.8 1 1 1 1 0.34 0.05 103 201 302 ---- 500 600 

Fanger I Hanoi 96170 -7.5 8.75 0.54 0.24 0.8 0.8 2 1 1 1 0.3 0.002 100 200 301 409 500 600 

II Hanoi 41.5 -7.5 8 0.8 0.8 0.8 0.8 3.5 1 1 2 0.3 0.002 103 202 302 409 501 602 

III Hanoi 46405 0 9.38 0.8 0.61 0.8 0.8 1 1 1 1 0.3 0.05 103 202 302 ---- 500 600 

Adaptive I Danang 199 0 4 0.2 0.4 0.8 0.8 1 1 1 1 0.3 0.002 103 202 302 408 500 602 

II Danang 58 -7.5 4 0.2 0.65 0.8 0.8 1 1 1 1 0.3 0.002 103 202 302 408 500 602 

III Danang 35047 0 9.25 0.2 0.39 0.8 0.8 1 1 1 1 0.3 0.05 101 200 301 ---- 500 600 

Fanger I Danang 74022 0 8.5 0.8 0.75 0.8 0.8 2 2 1 1 0.3 0.006 100 200 300 409 500 600 

II Danang 33.8 0 4 0.8 0.8 0.8 0.8 4 4 1 1.5 0.3 0.006 101 202 302 409 500 602 

III Danang 47174 0 9.25 0.8 0.8 0.8 0.8 1 1 1 1 0.3 0.05 103 202 302 ---- 500 600 

Adaptive I Hochiminh 60 -21 4 0.2 0.75 0.8 0.8 1 1 1 1 0.3 0.002 103 202 302 409 500 602 

II Hochiminh 17.8 -21 4 0.5 0.8 0.8 0.8 1 1 1 1 0.3 0.002 103 202 302 409 500 602 

III Hochiminh 34468 -3.8 9.5 0.33 0.43 0.8 0.8 1 1 1 1 0.3 0.05 101 200 301 ---- 500 600 

Fanger I Hochiminh 118474 15 8.5 0.8 0.7 0.8 0.8 1 1 1 1 0.3 0.006 100 200 300 409 500 600 

II Hochiminh 54.4 15 4 0.8 0.8 0.8 0.8 4 2.63 1 3 0.3 0.006 100 202 300 409 500 600 

III Hochiminh 49957 0 9.38 0.8 0.8 0.8 0.8 1 1 1 1 0.3 0.05 103 202 302 ---- 500 600 
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