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Abstract 

Based on a unique data set referencing exposures on single name credit default swaps 
(CDS) on European reference entities, we study the structure and the topology of the 
European CDS market and its evolution from 2008 to 2012, resorting to network analysis. 
The structural features revealed show bilateral CDS exposures describing growing scale-
free networks whose highly interconnected hubs constitute both a strength and weakness 
for the stability of the system. The potential “super spreaders” of financial contagion, 
identified as the most interconnected participants, consist mostly of banks. For some of 
them net notional exposures may be particularly large relative to their total common 
equity. Our findings also point to the importance of some non-dealer/non-bank 
participants belonging to the shadow banking system. 
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Executive summary 

This paper studies the topology of networks of CDS exposures on European reference 
entities based on a unique dataset covering the period from January 2008 to January 2012.1  

We analyse both the absolute levels and the changes over time of a set of well-established 
network metrics. We try to discern the economic intuition behind the time patterns revealed, 
and how contagion could spread across the structure. Thereafter, we focus on a set of 
network centrality measures in order to assess the prominence of CDS buyers and sellers in 
the structure of credit exposures, assigning different rankings to the most interconnected 
participants and analysing their evolution over the years as well as their distribution in the 
cross-section. We also compare our metrics with price-based indicators of systemic risk. 
While there is evidence of a positive correlation between network measures and the 
contribution-CoVar of Adrian and Brunnermeier (2011), other price measures display rather 
ambiguous results. Finally, we use balance sheet data to ascertain the financial resilience of 
the banks that dominate the market in terms of network centrality. 

The structural network features uncovered are in line with what one would expect given 
important economies of scale, capacity issues, and key information asymmetries in CDS 
markets, and are highly indicative of growing “scale-free” networks. In effect, our analysis 
shows bilateral CDS exposures describing networks that are very sparse, with the vast 
majority of market participants being exposed only to a few others; exposures are highly 
concentrated, and follow a fat-tailed (power-law) distribution; market participants, if not 
directly linked, are typically indirectly exposed to each other via other two or three 
counterparties only; firms with many counterparties tend to be exposed to firms with few and 
vice-versa. These features are robust across the four years of our sample period, although 
various time patterns point to a higher concentration of exposures over time. All in all, the 
networks studied in this paper can be described as consisting of a low number of highly 
interconnected hubs – the largest dealers – and a high number (increasing over time) of 
peripheral or less connected buyers. A key financial stability implication of such structures is 
that hubs are both a strength and weakness of the networks. Thus, adequate regulatory and 
supervisory action with respect to the more connected players is more likely to prevent 
shocks from spreading throughout the system. 

When we relate the identification of banking institutions that are the most central to 
balance sheet indicators of their financial soundness, we observe that the largest CDS dealers, 
while on average perceived as “safer” in the CDS market, tended to be less well capitalised 
than the non-dealer banks. While we cannot analyse an indicator of financial soundness for 
the very interconnected non-bank firms identified, we find that the average size of their 
bilateral exposures to other firms can be much higher than that of many bank-dealers. This is 
a concern as parts of these entities may belong to the shadow banking system operating 
under lighter regulation than other institutions and may not have sufficient loss absorption 
capacity to withstand financial shocks stemming from the CDS market.  

The nominal values of outstanding positions, and thus bilateral and multilateral net 
exposures, do seem to be an adequate metric for the purpose of studying the structural 
properties of CDS networks and obtaining insights into the potential impact of their 
complexity and interconnectedness on systemic risk. Nonetheless, it is worth noting that a 
complete analysis of the amounts at risk in derivatives contracts would also necessitate 
considering the price level and/or volatility of the reference entity, and the availability and 
extent of risk-mitigation mechanisms such as collateralisation and collateral netting 
agreements. Such an analysis is beyond the scope of this paper. 

                                                        
 
1  The dataset was provided to the European Securities and Markets Authority (ESMA) by the Depository Trust & Clearing 

Corporation (DTCC). 
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1. Introduction 

The credit default swap (CDS) market has attracted significant attention since the 
beginning of the 2007-2008 financial crisis. While designed as a hedging instrument to 
protect investors against counterparty risk, CDS have raised significant concerns amongst 
supervisors with regard to their potential risks in a situation of generalised financial distress. 
The three main concerns relate to the capacity of the CDS market to settle the failure of a 
major reference entity; the ability to cope with the consequences of default by a major dealer; 
the major role played by banks as protection sellers and consequently their potential 
vulnerability given the evidence of under-collateralization of CDS positions. Such fears have 
been exacerbated by the fact that this market is perceived in some quarters as a very opaque 
over-the-counter derivatives market with too little information on bilateral exposures, 
notwithstanding the increase in the amount of public information on CDS in recent years.2  

The evidence gathered so far on these concerns is mixed. On the one hand, the market has 
proven resilient and shown its capacity to settle major credit events, such as the default of big 
financial institutions, like Lehman Brothers, or such as the events in Greece. On the other 
hand, the dominance of a few big players in the market and fear of contagion led some public 
authorities to bailout these “too interconnected to fail” institutions, as in the case of AIG. The 
shock waves following these events also raised the issue of the role and relevance of this 
market for the transmission of financial shocks. 

So far, most analyses carried out on the CDS market have relied on CDS price correlations 
and co-movements (see Alter and Schueler, 2012, Jorion and Zhang, 2009, among others). 
Moreover, CDS spreads have been used to rank institutions or reference entities according to 
their contribution to systemic risk (Yang and Zhou, 2012). While very useful these price-
based measures present three main drawbacks. First, they tend to be volatile, which in turn 
renders volatile related rankings of systemic institutions; second, CDS markets may not 
always be very liquid; and third, by looking at interdependencies merely via price data one 
cannot study the full landscape of interconnections in the CDS market. On the other hand, 
given the size and, perhaps more importantly, the highly concentrated nature of the CDS 
market, a network analysis of bilateral exposures among CDS traders can be instrumental to 
an assessment of the impact of the topological features of the market on contagion and 
systemic risk.  

Network theory provides direct insights into highly complex and interconnected financial 
systems (see Soramäki et al., 2007, for one of the earliest applications of network analysis to 
payments system data, and Iori et al. 2008, for an application to the Italian money market). 
Similarly to bilateral exposures in the interbank market, the analysis of bilateral CDS 
exposures allows to directly capture counterparty risk, which is an important channel of 
contagion. In addition, some well-established network statistics provide a synthetic way to 
characterize key structural properties of the networks formed by CDS positions and to assess 
their stability. Monitoring their absolute levels and, more importantly, their developments 
over time can deliver important intelligence on the tendency of the CDS market to spread and 
amplify shocks or, conversely, to act as a regular insurance market allowing for better 
repartition and diversification of risks. Finally, network analysis can help identify those 
institutions whose difficulties have greater potential to jeopardize the resilience of the entire 
system. 

Against this background, this paper studies the topology of networks of CDS exposures on 
European reference entities. We rely on a unique data set provided to the European 
Securities and Markets Authority (ESMA) by the Depository Trust & Clearing Corporation 
(DTCC), the world’s largest CDS trade repository. We worked on an anonymised dataset, 

                                                        
 
2  See Stulz (2010) for a throughout analysis of the benefits and costs of over-the-counter versus on exchange trading of CDS. 
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which records weekly the notional value of CDS positions outstanding each Friday from 4 
January 2008 until 27 January 2012. These positions are used to reconstruct 213 networks 
(one per each Friday for which positions are registered) of net bilateral exposures. In each 
network, a net bilateral seller or buyer of CDS protection represents a node; a link is defined 
if one institution is a net buyer of protection from another. Four different network 
representations are considered, corresponding to different levels of CDS aggregation: 
Financials, Non-Financials, Sovereigns and the CDS market as a whole (where all CDS 
positions are included regardless of the specific underlying reference entity or its market 
sector). 

We analyse both the absolute levels and the changes over time of a set of well-established 
network metrics. We try to discern the economic intuition behind the time patterns revealed, 
and how contagion could spread across the structure. Thereafter, we focus on a set of 
network centrality measures in order to assess the prominence of CDS buyers and sellers in 
the structure of credit exposures, assigning different rankings to the most interconnected 
participants and analysing their evolution over the years as well as their distribution in the 
cross-section. We also compare our metrics with price-based indicators of systemic risk. 
While we find evidence of a positive correlation between network measures and the 
contribution-CoVar of Adrian and Brunnermeier (2011), other price measures display rather 
ambiguous results. Finally, we use balance sheet data to ascertain the financial resilience of 
the banks that dominate the market in terms of network centrality. 

Our analysis of the network topology shows bilateral exposures describing growing “scale-
free” networks. These are very sparse, with the vast majority of market participants being 
exposed only to a few others; exposures are highly concentrated, and follow a fat-tailed 
(power-law) distribution; market participants, if not directly linked, are typically indirectly 
exposed to each other via other two or three counterparties only (i.e. they are at a short 
average distance from one another); firms with many counterparties tend to be exposed to 
firms with few and vice-versa (i.e. networks display strong disassortative mixing). These 
features are robust across the four years of our sample period, although various time patterns 
point to a higher concentration of exposures over time. All in all, the networks studied in this 
paper can be described as consisting of a low number of highly interconnected hubs – the 
largest dealers – and a high number (increasing over time) of peripheral/less connected 
buyers. 

The analysis of various centrality metrics confirms the intuitive assumption that, due to 
highly asymmetric returns on CDS positions, net sellers can be considered the primary locus 
of systemic counterparty risk in the CDS market. However, taking indirect exposures (i.e. 
exposures to sellers of sellers of CDS) into account points to the importance of some non-
dealer (and non-bank) participants for the resilience of the whole network. Finally, when we 
relate the identification of banking institutions that are the most central to balance sheet 
indicators of their financial soundness, we observe that the largest CDS dealers, while on 
average perceived as “safer” in the CDS market, tended to be less well capitalised than the 
non-dealer banks. In effect, the results show that for some banks net CDS exposures may be 
particularly large relative to their total common equity. While we cannot analyse an indicator 
of financial soundness for the very interconnected non-bank firms identified, we find that the 
average size of their bilateral exposures to other firms can be much higher than that of many 
bank-dealers. 

This paper contributes to an increasing body of literature that looks at the role of CDS as 
transmitters of contagion through the large and complex network of financial linkages they 
create across financial institutions (see Brunnermeier et al., 2013 for a broad overview of 
possible contagion channels in the CDS market). For instance, Heise and Kühn (2012) 
examine CDS-induced contagion in a stylized network of corporates and financial 
institutions. They find that CDS can create additional contagion channels which may lead to 
greater instability of the entire network in times of stress, especially when banks use CDS to 
expand their loan book. Vuillemey and Peltonen (2012) model sovereign default and its 
spillovers into the European banking system. By contrast with former papers, they consider 
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not only CDS exposures but also the portfolio of underlying credit exposures. They point out 
that a main driver of contagion is related to collateralization and variation margins, CDS 
sellers being exposed to sudden increases in collateral requirements on multiple correlated 
exposures. They conclude that risk mitigating mechanisms, such as collateral netting 
agreements and collateralisation, can considerably reduce the scope for contagion. 
Importantly, their results point to the limits of a default cascade analysis of the kind 
traditionally performed to study contagion in national interbank markets (see Upper, 2011) 
to assess the financial stability implications of a shock in the CDS market.  

Given the unavailability of any information on the collateralisation of CDS positions in the 
DTCC dataset, we decide not to run this kind of domino simulations – whereby several 
rounds of contagion are triggered by the initial default of one institution due to exposures to 
the defaulting bank(s) and to the size of related losses relative to bank capital; we estimate 
that they would provide a too simplified and unrealistic view of the potential for contagion 
via CDS exposures (see also Brunnermeier et al.). Instead, we resolve to rely on network 
techniques for the identification and monitoring over time of the key topological properties of 
networks of CDS exposures.  

 Mainly due to data unavailability few papers exist in the literature documenting the actual 
characteristics of CDS networks. Two recent exceptions are Markose et al. (2012) and 
Peltonen et al. (2013). In the first paper the authors reconstruct the US CDS network using 
the FDIC Call Reports on off-balance sheet bank data for Q4 2007 and Q4 2008. They study 
the domino propagation of financial contagion in the network, identify a few participants that 
dominate the market in terms of network centrality, and based on the latter propose a 
“super-spreader tax”. Peltonen et al. study the determinants of certain properties of CDS 
networks (for specific reference entities) based on actual outstanding bilateral exposures on 
191 global sovereign and financial reference entities at end 2011. 

Our paper implicitly provides a test for the results of recent theoretical models of strategic 
network formation and intermediation in over-the-counter (OTC) markets. In particular, our 
findings support the model by Babus and Kondor (2013), predicting equilibrium networks 
with few very well connected (and well informed) and many less connected (and less well 
informed) dealers based on the informational content of the strategies of the counterparties 
that the dealers trade with. The main intuition behind their network formation game is 
related to information aggregation through trade: The equilibrium price in each transaction 
partially aggregates the private information of all agents; this leads to a system where only a 
small number of sophisticated financial institutions are responsible for the bulk of the 
trading volume.3 

Finally, it is worth noting that a complete analysis of the amounts at risk in derivatives 
contracts would also necessitate considering the price level or volatility of the reference 
entity, the duration and liquidity of contracts, the creditworthiness of counterparties and, last 
but not least, the availability and extent of risk-mitigation mechanisms such as 
collateralisation, collateral netting agreements and close-out netting4. Such an analysis is 
beyond the scope of this paper. Nevertheless, the nominal values outstanding, and thus 
bilateral and multilateral net positions, do seem to be an adequate metric for the purpose of 
studying the structural properties of networks of CDS exposures and obtaining insights into 
the potential impact of their complexity and interconnectedness on systemic risk. In addition, 

                                                        
 
3  The emergence of dealer-centric markets, where one agent acts as intermediary and trading counterparty for all other 

agents, is also at the centre of Babus (2013). In her model, a link between two agents grants each of them access to 
information about the other. When acquiring information is costly, and repeated interactions are allowed, agents 
optimally choose to trade with a broker-dealer because paying intermediation fees is less expensive than acquiring 
information. In equilibrium one agent intermediates all the trades. 

4  Close-out netting is the mechanism whereby all derivative transactions concluded under a given contract (single or master 
agreement) can be terminated in the case of a counterparty default. It is one form of netting that typically occurs under 
the ISDA (International Swaps and Derivatives Association) Master Agreement. 
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the aggregation of CDS positions across different reference entities belonging to the same 
market sector appears meaningful if the aim is to understand counterparty risk, and if the 
resilience of the CDS market to the default of one of its participants is of greater concern than 
assessing contagion stemming from the default of individual reference entities. In effect, the 
growing importance of risk mitigation mechanisms in the OTC derivatives market has 
probably contributed to shaping CDS networks as graphs highly structured around bi-
directional gross exposures, i.e. widely used mechanisms such as close-out netting may have 
reinforced the importance of bilateral relationships in this market. In this respect, the 
aggregation of CDS positions even across different market sectors allows us to focus more 
clearly on the risks related to counterparty failure. 

The rest of the paper is organised as follows. The following section presents the data used 
for the analysis and the main characteristics and recent developments of the CDS market for 
European reference entities. Section 3 describes the methodology used for the analysis and 
discusses the key structural properties of the networks of CDS exposures, their evolution over 
time and the possible implications for financial stability. Section 4 identifies the most 
interconnected market participants by means of network centrality and compares these 
rankings with systemic risk measures based on CDS prices or equity returns. Section 5 seeks 
to assess their potential role in spreading financial shocks through the network by relating 
centrality indicators to banks’ financial soundness, measured with reference to selected 
balance sheet items. The last section concludes. 

2. The credit default swap (CDS) market for European reference entities 

2.1. CDS contracts and counterparty risk 

A CDS is an over-the-counter derivative financial instrument used to hedge against the 
risk of default by a particular reference entity. CDS resemble insurance policies on an entity's 
debt obligations. The buyer of the swap holds the insurance, while the seller takes the risk: 
the former receives positive pay-outs from the seller when a credit event on the underlying 
entity is deemed to have occurred and in return pays periodic premiums to the seller. 

One key characteristic of CDS contracts is that, due to their dominantly over-the-counter 
(or off-exchange) nature, each of the parties involved could have credit risk concerns with 
respect to the other. The CDS seller is exposed to the buyer in relation to the possible default 
of the underlying reference entity. The buyer is in turn exposed to a default of the seller: If 
the latter defaults, the buyer will not get his pay-off in case of a credit event and will have to 
write down the face value of its contracts. Another crucial feature is the high asymmetry of 
pay-offs between buyers and sellers, which is heightened in periods of stress as defaults are 
more likely while recovery rates tend to be lower under such circumstances. As a 
consequence, the risk that buyers of protection will incur huge losses increases, making large 
net sellers more vulnerable to counterparty risk. Finally, among the several ways of 
terminating the exposure to the reference entity underlying a CDS contract (apart from a 
credit event), the most common one is by entering into a transaction with the opposite sign 
with other market participants (offsetting transactions)5. Offsetting transactions create a 
complex network of net exposures resulting in increased counterparty risk, which is the scope 
of this paper. 

                                                        
 
5  For instance, the “novation” entails the replacement of one of the two original counterparties to the contract with a new 

one. Some changes may also be related to early termination clauses (for instance in the event that one of the 
counterparties defaults) or to “compression” mechanisms designed to cancel redundant contracts due to offsetting 
positions. For more details, see the documentation established by the International Swap and Derivatives Association 
(ISDA). 
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2.2. DTCC data 

The data we use consist of weekly notional positions on single name CDS (i.e. CDS linked 
to a specific reference entity as opposed to “index” CDS, related to a portfolio of entities) 
registered in the DTCC’s Trade Information Warehouse (TIW). The notional value registered 
in DTCC’s TIW represents the par amount of credit protection bought or sold, equivalent to 
debt or bond amounts, and is used to derive the coupon payment calculations for each 
payment period and the recovery amounts in the event of a default.6 This source of data 
differs from the data provided by the Bank for International Settlements (BIS). The latter is 
collected through a voluntary survey while DTCC’s data is based on the repository system 
that collects actual settlement instructions. According to the BIS, the notional value 
outstanding of CDS globally was USD 26,900 billion in June 2012 (Fig. 1, upper chart), 
whereas DTCC reported about USD 23,000 billion. This difference between the two values is 
due mostly to the more limited coverage within DTCC data of CDS contracts written by non-
dealers.  

2.3. Main market developments 

In contrast to the decline observed in the global CDS market since 2008 (BIS, 2012) the 
figures gathered through the DTCC’s Warehouse for European (EU) reference entities show 
that the gross value of outstanding CDS positions on all EU reference entities grew by 32% 
from 2008 to the beginning of 2012, climbing from an average of USD 3,500 billion in 2008 
to USD 4,600 billion in the opening weeks of 2012 (Fig. 1, lower chart). A break in the 
uptrend in CDS sales can be seen to occur in September 2008, related to the default of 
Lehman Brothers. This credit event resulted in the closure of outstanding positions involving 
the failed investment bank, reducing the gross notional outstanding. Thereafter, the market 
continued to grow but at a slower pace. 

Gross values provide an important indication of the size and growth of market activity, but 
they are not the most suitable for assessing the risks stemming from participants’ exposures. 
For this purpose, net notional exposures are more interesting to look at. The net notional 
outstanding also witnessed an uptrend, at least until the third quarter of 2009, but the pace 
of increase was slower. Net notional amounts are significantly lower than the gross 
transaction values. 

 

                                                        
 
6  It is important to note that the notional values provided in the Warehouse do not reflect the market price of the contracts 

and may correlate or not with mark-to-market values. 
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Fig. 1.  

Above: Global CDS market developments (Source: BIS survey, June 2012).  

Below: Developments in the market of CDS on European reference entities (Source: DTCC’s Trade 
Information Warehouse). 

 

The dataset used in this paper allows us to provide an overview of the EU CDS landscape 
and to describe some of its structural trends, thus filling a gap in the literature. While the 
growth observed may reflect partly an increasing coverage of CDS transactions by DTCC, it is 
likely to reflect as well a specific European trend due, in particular, to the euro area debt 
crisis and the need for investors to hedge against sovereign default risk. Notably, DTCC data 
reveal that the net notional outstanding on EU-25

7
 sovereigns increased from less than 

USD 100 billion in 2008 to about USD 200 billion in January 2012 . This applies 
notwithstanding the BIS reporting that sovereign CDS notional remained relatively stable at 
a global level in Q2 2012 relative to end 2011 (at USD 3,000 billion). The market share of 
CDS referencing EU sovereign debt out of the total notional outstanding (all EU reference 
entities) rose from 24 percent in 2008 to 42 percent in early 2012 (see Fig. 2). At the same 
time, the share of net notional outstanding on financials remained roughly constant or 
dipped slightly throughout the sample period. This evidence may hint at the presence of 
moral hazard in the European financial system, in the form of a government put: the 
beginning of the most intense phase of the crisis, in September 2008, coincides with a shift in 
CDS positions from EU financials and non-financials to EU sovereigns.  

                                                        
 
7  EU-27 excluding Luxembourg and Czech Republic. 
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Fig. 2. Market shares of net CDS notional outstanding by market sector of the underlying reference 
entity. 

2.4. Market participants and market concentration 

The strong and rapid growth of the CDS market on EU reference entities is linked to a 
rapid increase in the number of market participants, which grew remarkably over our sample 
period. The upward trend in the number of buyers was similarly driven by financial, 
corporate and sovereign reference entities until September 2008; thereafter, it started to be 
driven mainly by buyers of CDS on EU sovereigns. The number of sellers, instead, started to 
gather pace after autumn 2009 following the release of bad news on Greece’s public finances. 
The significantly lower number of sellers compared to buyers (almost half, see Fig. 3) is a first 
indication of the prominent role that the former play in this market.8 

The highly concentrated nature of the market is thrown into sharp focus by a 
consideration of participants’ market shares in terms of the notional amounts of protection 
sold. Notwithstanding the very high number of asset managers and hedge funds selling CDS 
(approximately 60% of the total number of sellers at the beginning of 2012), these 
institutions account (on average) for a mere 2.1 percent of the total CDS sales over the sample 
period. By contrast, banks (the red area in Fig. 4) represent about 30% of the total number of 
sellers but account for more than 96 percent of CDS sales until the end of 2009 and about 88 
percent at the beginning of 2012. 

Banks are, therefore, the most prominent players in this market. The decline in their 
market share since 2010 follows the regulatory move to centralised clearing for standardised 
over-the-counter derivatives. Accordingly, the percentage of contracts sold by central clearing 
counterparties (CCP) (readable on the right-hand scale) rose rapidly from less than 1% in 
January 2010 to almost 10% at the beginning of 2012. As noted above, until CCPs entered the 
market, hedge funds held the second largest sales share, at around 1.3%, with asset managers’ 
and financial services’ share below 1%. Zooming in the plot after excluding banks and CCPs 
(Fig. 4, right-hand chart), we can see hedge funds stepping up their selling activity in CDS on 
European entities after the default of Lehman and reducing it progressively since the second 
half of 2009. Also worth noting is that from September 2010 asset managers became more 
active than hedge funds, although their volumes continued to represent less than 1.5 percent 
of total market sales. 

                                                        
 
8  For further details on the type of market participants acting as CDS buyers and sellers see Brunnermeier et al. (2013). 
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Fig. 3.  

Left: Buyers of CDS by type of institution.  

Right: Sellers of CDS by type of institution. 

 

 

Fig. 4.  

Left: Shares of CDS sales by seller type.  

Right: Shares of sales by seller type excluding banks and CCP. 
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3. The networks of CDS exposures 

In this section, we first describe shortly the methodology used to study the structural 
properties of directed networks in which market participants are linked bilaterally via net 
CDS exposures. Second, we visualize some “snapshots” of sectoral CDS networks on 
27 January 2012 hinting to some key characteristics of a very complex set-up. Third, we 
discuss the findings of our network analysis, the stability of the properties revealed over time, 
and the implications for financial stability. 

3.1. Methodology 

We construct weekly networks based on CDS notional positions registered in DTCC’s TIW 
each Friday from 4 January 2008 to 27 January 2012. In each network, net bilateral sellers or 
buyers of CDS protection represent the nodes; a link is defined where one institution is a net 
buyer of protection from another. Each link is weighted and directed: The weight represents 
the size of the seller’s net exposure vis-à-vis the buyer in case of a credit event, as well as the 
size of the buyer’s exposure to the seller in terms of the pay-off he could lose in case of a 
seller’s default; the direction goes from the buyer to the seller of CDS protection. This 
amounts to building 213 asymmetric adjacency matrices where gij = 1 if i is a net buyer of 
protection from node j, with wij being the net bilateral selling position of node j vis-à-vis node 
i (see Appendix A for more details).9 

We consider four different network representations: three representations correspond to 
the three market sectors in which the reference entities are classified in the data (Financials, 
Non-Financials, and Sovereigns); the fourth is the network for the CDS market as a whole, 
independently of the specific sector of the underlying reference entity. Therefore, in the first 
three “sectoral” networks, the net bilateral exposures are calculated using CDS written 
against Financials/Non-Financials/Sovereigns respectively. In the fourth, net bilateral 
exposures are computed bundling together all CDS positions. 

Both the net bilateral exposure and the gross amount of protection sold have been 
considered for definition of the links, and we verify that the uncovered changes in the 
networks are not driven by this choice.10 In the following, however, we present evidence 
derived from networks based on net notional positions: Net notional values represent the 
maximum possible net funds transfers between sellers and buyers of protection that could be 
required on the occurrence of a credit event relating to a particular reference entity11; thus 
they are arguably more relevant from the point of view of assessing contagion risk in the 
context of a potential market stress situation (be it the default of a reference entity or the 
default of a protection seller). Also, one has to keep in mind that netting is a crucial means of 
mitigating credit risks associated with OTC derivatives. For instance, under the widely used 
close-out netting mechanism all derivative transactions concluded under a given master 
agreement can be terminated in case of default of a counterparty, and negative and positive 
position values can be combined into a single net payable or receivable, as illustrated in 
Fig. 5. 

                                                        
 
9  Network indicators have been estimated using the R package Graph. The analysis concerns the largest connected 

component of each weekly network of exposures, i.e. the largest sub-network in which all nodes are connected via 
undirected paths. Appendix A provides an overview of basic concepts and definitions in network theory. 

10  A comparison of network statistics built on the basis of gross versus net bilateral positions is available upon request. 

11  Actual net funds transfers are dependent on the recovery rate for the underlying bonds or other debt instruments. 
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Fig. 5. Payment obligations with and without close-out netting (Source: ISDA, 2010). 

3.2. Visualization of CDS networks 

Fig. 6 (left-hand side) portrays the CDS network for EU sovereign reference entities on 
January 27, 2012. The chart offers a synthetic view of some of the main features of the 
market: CDS activity is clearly highly concentrated on the major market dealers (the green 
nodes are exposed to other participants for more than USD 3 billion both as sellers and 
buyers); some of them are more active on the selling side (the longer ones), while others are 
more active as buyers (the wider); most of the nodes cannot even be distinguished. Zooming 
into the previous chart to consider only the largest net exposures (right-hand side figure), we 
observe 104 links carrying an amount above USD 1 billion and accounting for more than 
45.4% of the total net notional outstanding as of January 27, 2012. In this case the size of the 
nodes is proportional to the sum of their net bilateral selling and buying exposures in the 
market. The green nodes emerge as the major dealers, the blue one is a “buy-side” (i.e. non-
dealer) bank, while the red firm is a non-dealer/non-bank participant. In this case too, the 
other participants are barely visible compared to the largest ones. Unlike the previous chart, 
in this one the links are proportional to the size of the underlying net exposures. We can see 
that the largest net exposure (the thick black link) connects two dealer banks, while the 
second and third connect two buy-side firms (an asset manager and a bank) to two different 
dealers. 

Similarly, in the network for EU financials (Fig. 7) the green dealers stand out. The blue 
nodes are buy-side banking firms. Some non-banks are also present, but active only on one 
side of the market: They are too small in comparison to the other nodes. The orange node is a 
CCP; its rounded shape shows that it is similarly active both as a net bilateral seller and net 
bilateral buyer of CDS protection. Interestingly, the financials graph is almost twice as dense 
as the sovereign graph, revealing that the network on sovereigns is significantly more 
concentrated. The core of the network on EU financials comprises 14 dealers (in green), one 
CCP (in orange), two hedge funds (in red), and only one non-dealer bank. The core shows the 
“first tier” of the market, in which the largest links typically connect the dealers among 
themselves. However, one exception is plainly visible, with the second largest link connecting 
a hedge fund to a dealer. 
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Fig. 6.  

Left: CDS network on EU sovereign ref. entities on 27 January 2012.  

Right: core of the network.The graph on the left consists of 182 participants and 716 links; only net 
exposures larger than USD 100 million have been plotted (a graph considering all outstanding 
exposures would consist of 548 nodes and almost 2,500 links). The size of the nodes is proportional to 
participants’ activity in the market: The length and width are proportional respectively to the net 
amount of protection sold and the net amount bought. The core of the network (right-hand chart) 
consists of 27 nodes and 104 links above USD 1 billion. The thickness of the links is proportional to the 
size of bilateral net exposures. 

                                       

Fig. 7.  

Left: CDS network on EU financial reference entities on 27 January 2012.  

Right: core of the network.The graph on the left consists of 87 participants and 495 links; only net 
exposures larger than USD 100 million have been plotted. The size of the nodes is proportional to 
participants’ activity in the market: The length and width are proportional respectively to the net 
amount of protection sold and the net amount bought. The core of the network (right-hand chart) 
consists of 18 nodes and 61 links above USD 1 billion; links’ size is proportional to the size of bilateral 
net exposures. 

3.3. Results and financial stability implications 

Table 1 reports summary descriptive statistics for the networks of all reference entities 
from 2008 to 2012. Summary statistics for the three different (sectoral) sub-networks are 
reported in Appendix B.  
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Table 1 
Yearly summary statistics for the networks of all CDS contracts (average, minimum, maximum, 
standard dev.) 

Year 2008 2009 2010 2011 2012a 

Nodes (avg) 

  Min 

  Max 

  St. Dev. 

480 

410 

514 

27 

534 

490 

595 

27 

694 

599 

747 

44 

776 

746 

807 

20 

803 

799 

805 

- 

Links (avg) 

  Min 

  Max 

  St. Dev. 

2582 

2220 

2767 

134 

2829 

2615 

3131 

130 

3419 

3142 

3619 

133 

3704 

3584 

3856 

67 

3730 

3718 

3738 

- 

Density (avg) 

  Min 

  Max 

  St. Dev. 

1.13% 

1.04% 

1.32% 

0.07% 

1.00% 

0.89% 

1.09% 

0.05% 

0.72% 

0.64% 

0.89% 

0.07% 

0.62% 

0.58% 

0.65% 

0.02% 

0.58% 

0.58% 

0.58% 

- 

Disassortativity (avg) 

  Min 

  Max 

  St. Dev. 

-70.3% 

-71.4% 

-68.2% 

0.7% 

-69.3% 

-71.2% 

-67.9% 

1.0% 

-69.7% 

-71.5% 

-67.9% 

1.1% 

-72.3% 

-72.9% 

-70.8% 

0.4% 

-71.8% 

-71.9% 

-71.7% 

- 

Average shortest distance 
(avg) 

  Min 

  Max 

  St. Dev. 

2.52 

2.48 

2.55 

0.01 

2.48 

2.46 

2.50 

0.01 

2.52 

2.47 

2.56 

0.02 

2.53 

2.51 

2.55 

0.01 

2.53 

2.53 

2.53 

- 

Diameter (avg) 

  Min 

  Max 

  St. Dev. 

5 

4 

5 

0 

5 

5 

5 

0 

5 

5 

5 

0 

5 

4 

5 

0 

5 

5 

5 

- 

Clustering coeff. (avg) 

  Min 

  Max 

  St. Dev. 

15.0% 

13.5% 

17.5% 

1.0% 

13.1% 

12.2% 

13.7% 

0.4% 

10.6% 

9.2% 

12.1% 

0.8% 

8.8% 

8.3% 

9.2% 

0.3% 

8.5% 

8.4% 

8.5% 

- 

a The data for 2012 cover only the first four weeks of the year. This is why we do not report standard deviations. 

3.3.1. Results 

a. Interconnectedness 

With 803 nodes (participants) and 3,730 links (net buyer-net seller order pairs) active in 
the first weeks of 2012, the overall CDS network stands as a large and complex set-up. The 
same holds true for the CDS network in 2008, although the number of participants was much 
lower (480 ± 27) at that time, as was the number of links (2,582 ± 134). While the CDS 
market’s long-term growth is flagged up clearly by the figures reported in Table 1, we observe 
that the time series of CDS network metrics do not reflect the short-term periodic patterns 
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that are typically observed in the networks of payment flows or money market loans studied 
in the economic literature. This is related to the “stock” nature of the exposures data we use. 

The network connectivity or density for all-references CDS networks averaged around 1% 
over the sample period. This means that CDS networks are highly sparse, with participants 
typically directly exposed to a small set of other institutions: in 2012, most market 
participants were holding net selling/net buying positions vis-à-vis only another five. As 
regards sectoral networks, the density of the sovereign networks has declined very 
considerably over time. Bearing in mind the rapid increase in the number of institutions 
forming these networks, we calculate that in a typical week each institution was exposed to 
another three or four, be it in 2008 or in 2012. 

The connectivity shows a high, negative correlation with the net value of outstanding 
contracts (Fig. 8). This suggests that the market has undergone increasing concentration: 
while the notional amounts outstanding continued to expand, the higher turnover was 
concentrated on an even smaller number of large links out of all the possible links between 
market participants. This is validated by the figures on network reciprocity computed on 
gross-exposure networks.12 Reciprocity is null by construction for networks based on net 
exposures but turns out to be particularly high for the overall CDS network based on gross 
bilateral positions (it stood at 65% on average over the full time span). Or, in a randomly 
constructed graph, reciprocity and connectivity are equal, therefore in a network with the 
same average number of nodes and links as the gross-CDS network we are dealing with, 
reciprocity would be 1.3%. As the actual reciprocity we find for gross-CDS networks is 50 
times that of comparable random graphs, the former can be seen as highly structured around 
bi-directional gross CDS exposures between institutions. This trend, however, came to 
something of a halt in the first quarter of 2010 and saw a slight reduction in the closing 
months of 2011. 

 

Fig. 8. Network connectivity against net CDS notional value (2008-2012) 

Based on all CDS positions in the first weeks of 2012, the upper histogram of Fig. 9 plots 
the in-degree distribution of the network, i.e. the percentage of market participants who were 
net bilateral sellers of CDS protection to a given number of buyers (readable on the x-axis); 
the lower histogram displays the distribution of out-degree, i.e. the percentage of 
participants who were net bilateral buyers of CDS from a given number of sellers (readable 
on the x-axis). From the perspective of net bilateral sellers, we can see that whereas a limited 
number of nodes are highly interconnected and sell protection to many other participants, 
most nodes are linked to only a few others. More specifically, more than 50% of the nodes are 
                                                        
 
12  Reciprocity measures the percentage of links for which there is also a connection in the opposite direction. 
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on average net buyers of protection (thus they do not have any incoming link and their in-
degree is zero); in any typical reporting week, 69% sell protection to one participant at most 
and 94% to a maximum of ten other institutions. At the other extreme, ten hubs were 
exposed to more than 100 counterparties on average in the first weeks of 2012 and only four 
of them were exposed to more than 200. Similarly, if we consider the distribution from the 
perspective of net buyers, we immediately realise that most market participants buy CDS 
from a few net sellers (almost half buy from only one), while only six buyers buy CDS from 
more than 100 counterparties. Comparing the two distributions, we see that the maximum 
(and also the average) number of participants who are net bilateral sellers of CDS is less than 
half the maximum (or average) number of participants who are net bilateral buyers. All the 
institutions in the tails are G14 dealers.13 

 

Fig. 9.  

Above: Distribution of the no. of institutions to which each participant sells CDS (in-degree) in 
2012.    

Below: Distribution of the no. of institutions from which each participant buys CDS (out-degree) 
in 2012. 

                                                        
 
13  The G14 is the industry group comprising the largest global derivatives dealers (Bank of America, Barclays, BNP Paribas, 

Citigroup, Credit Suisse, Deutsche Bank, Goldman Sachs, HSBC, JPMorgan Chase, Morgan Stanley, Royal Bank of 
Scotland, Société Générale, UBS, and Wells Fargo). Nomura joined the group in September 2011 and Crédit Agricole in the 
first quarter of 2012, causing it to be renamed G16. Note that the CCP active on CDS on EU references has only eight 
incoming and six outgoing links. 

Hubs – 10 net bilateral 
sellers to more than 100 
counterparties 

6 net bilateral 
buyers from 
more than 100 
counterparties 
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b. Network structure 

The tendency of “similar” nodes to be linked, or assortativity, is measured in terms of 
node degree, i.e. how often highly (or little) connected nodes tend to be connected to other 
highly (or little) connected nodes. With an average level of assortativity of -70%, overall CDS 
networks appear to be strongly disassortative: Participants with many counterparties tend to 
be linked to institutions with few and vice-versa. 

Fat-tailed degree distributions, high negative assortativity and very high sparseness point 
to a wide cross-sectional variation of individual institutions’ connectivity (or degree 
centrality), suggesting that CDS exposures trace so called scale-free networks. The latter have 
attracted particular attention in scientific literature for their structural and dynamic 
properties. In particular, the scale-free property has been found to correlate strongly with the 
network's robustness to failure (see Callaway et al., 2000). It turns out that the major hubs 
are closely followed by smaller ones. These, in turn, are followed by other nodes with an even 
smaller degree, and so on. This hierarchy, which is present in many real-world networks, 
allows fault tolerant behaviour. That is to say, if failures occur at random and the vast 
majority of nodes are low-degree, the likelihood of a hub being affected is almost negligible. 
Even if a hub failure does occur, the network will not generally lose its connectedness due to 
the remaining hubs. On the other hand, if we choose a few major hubs and remove them from 
the network, it is turned into a set of rather isolated graphs; this is called robust-yet-fragile 
property. 

Scale-free systems are typically identified by testing the goodness of fit of both weighted 
and unweighted degree distributions to a power law by means of the Kolgomorov and 
Smirnoff test. In Appendix C we report the results of the test for net exposures (i.e. weighted 
degree) larger than an estimated threshold. The test cannot reject the null that, across the 
years, CDS networks resembled scale-free systems. The minimum net position above which 
exposures are distributed according to a power law has decreased by a third between 2008 
and 2011; correspondingly, the number of exposures belonging to the tail of the distribution 
has increased by roughly 30%, again suggesting an increasing concentration of CDS positions 
over time. 

Finally, as is typical of scale-free networks, the very low connectivity does not prevent the 
network from displaying a very short average distance between any two nodes, even between 
the two farthest away ones in the system. For the all-references network, the average distance 
between all pairs of two institutions was 2.51 links (± 0.02) and the diameter (i.e. the 
maximum distance) 5 links over the entire sample period. Not surprisingly, these figures are 
lower than would be the case in random networks of comparable size, which confirms the 
presence of relationships between institutions trading in the CDS market.14 

c. Clustering 

The clustering coefficient measures the probability that two institutions are bilaterally 
linked (i.e. that one of them is a net seller to the other) given that a third institution is a net 
seller of protection to both of them. A clustering coefficient equal to 1 indicates that the 
network is composed of one or more fully connected sub-networks. A network with a 
clustering between 0 and 1 can be seen as one with fully connected sub-networks of this kind 
in which, however, some links are “missing”. In the EU CDS networks the clustering 
coefficient, which was relatively high at the beginning of 2008 – when it stood at 15% for the 
network of all reference entities and more than 20% for the networks of CDS on financials 
and sovereigns – gradually decreased thereafter for all the networks, with a particularly steep 
downward trend for the network on sovereigns. This pattern is driven partly by the growing 

                                                        
 
14  The average shortest distance in a network with the same number of nodes and links as the all-references representation 

would have ranged between 3.6 and 4.4 links. 
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number of buyers and sellers over time, which increases the number of potential groups of 
three nodes, thus raising the denominator of the clustering coefficient. At the same time, 
however, the lower clustering could be capturing a tendency among the increasingly 
numerous buyers to connect to the same net seller while being less, and less frequently, 
linked among themselves, on the one hand, and/or, on the other hand, a higher number of 
missing links between the large net sellers, i.e. while periphery institutions continued to 
cluster around more interconnected hubs, the latter became relatively less tightly connected 
between themselves. 

3.3.2. Financial stability implications 

The evidence discussed corroborates the basic intuition that, owing to highly asymmetric 
returns on CDS positions, large and highly interconnected net sellers of protection are the 
primary locus of systemic counterparty risk in the CDS market. The high negative 
assortativity coefficient is indicative of a core-periphery structure, where net sellers are the 
hubs in the core selling CDS protection to numerous peripheral net buyers. Such tendency 
appears remarkably stronger than the one evidenced for interbank money markets in the 
literature.15 Also, it is important to note that in such compact networks as the ones we analyse 
the impact of a credit event is likely to be widespread, as no institution is remote from the 
others. 

All these structural features are in line with what one would expect given important 
economies of scale, capacity issues, and key information asymmetries, and are highly 
indicative of scale-free networks. A key financial stability implication of such structures is 
that hubs are both a strength and weakness of the networks. Thus, adequate regulatory and 
supervisory action with respect to the more connected players is more likely to prevent 
shocks from spreading throughout the system. The discussion of network clustering confirms 
that the main hubs are surrounded by numerous peripheral nodes – representing the so-
called “spokes” in graph theory terminology – typically connected only to one hub and not 
linked to other clusters. This suggests a system resembling to a hubs-and-spokes model (see 
Fig. 10). Ensuring the safety of the largest net sellers is therefore more likely to secure the 
safety of all the nodes linked to them. In general, however, it is important to note that the 
extent of contagion would ultimately depend on the size of exposures, the recovery rate and 
each institution’s financial resilience and ability to meet its payment obligations following a 
credit event or to post collateral following a downgrade in the credit rating of the dealer itself. 

 

Fig. 10. Graphical illustration of a simple hub-and-spoke model: Hubs are the red node at the centre  
and the various green nodes to which the blue spokes (peripheral nodes) are connected. 

                                                        
 
15  See for instance Craig and von Peter (2010) for the German interbank market. 
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4. Identification of potential super spreaders of financial contagion 

Centrality is one of the most-studied concepts in social network analysis, and certainly one 
that has attracted a lot of attention for its potential application to financial networks. Existing 
indicators provide various angles from which a market player may be deemed prominent in a 
network of financial linkages; and they also deliver information on the potential impact of an 
institution’s failure on the rest of that network. Following Haldane (2009), economists, 
market analysts, and policymakers16 have recognised the similarity between the potential of 
high-risk, high-infection individuals for the spread of epidemics and that of the most 
interconnected financial institutions for the spread of financial contagion. In allusion to this 
similarity, we refer to the most central CDS market participants as potential super spreaders. 

4.1. Methodology 

We consider two types of weighted and directed networks (all reference entities included) 
for each week: one based on the links incoming to the nodes (as for the global properties 
analysed in section 3) and the other based on links outgoing from the nodes. Centrality 
metrics are thus computed over 426 directed and weighted networks from 4 January 2008 to 
27 January 2012, i.e. 213 asymmetric adjacency matrices based on incoming links and 213 
asymmetric adjacency matrices based on outgoing links (i.e. gji = 1 if j is a net buyer of 
protection from i, with wji being the net bilateral buying position of j vis-à-vis i). We consider 
both local and global centrality metrics (see Appendix A). 

Local network centrality. In CDS networks whose links represent buyers’ net notional 
exposures to sellers, the most natural way to identify key market participants is to look, 
firstly, at the number of counterparties to which each participant sells or from which it buys 
CDS protection and, secondly, at the value of each participant’s net selling or net buying 
position vis-à-vis all the other market players. The first pair of properties is measured by the 
node degree (in- and out-degree, respectively); the second pair is measured by the node in-
strength for the net bilateral selling position and by the node out-strength for the net bilateral 
buying position. Finally, we consider the difference between the net selling and net buying 
position of a node, i.e. its net multilateral position (or net-strength). 

Global network centrality. In order to capture the prominence of CDS players in the 
whole network structure we also consider betweenness and eigenvector centrality. Provided 
these two measures take into account a node’s direct as well as its indirect links (i.e. links to 
counterparties of their counterparties), they are potentially relevant for capturing the extent 
of feedback (or second-round) effects following a shock at one market participant. 

4.2. Results and financial stability implications 

4.2.1. Results 

Table 2 summarizes the 2011 rankings of the top-20 institutions based on different 
network metrics for the network of all reference entities. (Appendix D reports the rankings 
based on averages over the full sample period 2008-2012). 

a. Largest net bilateral sellers 

The first two columns of Table 2 portray institutions’ ranking according to in-degree and 
in-strength centrality, thus identifying the largest net bilateral sellers of CDS on EU reference 
entities. They show clearly that banks, especially large international entities (the so called 
Global Systemically Important Banks – G-SIBs17), play a pivotal role in the CDS market. 
Interestingly, however, other institutions such as an asset manager, a hedge fund and a CCP 

                                                        
 
16  See for instance Markose et al. (2012), Tumpel-Gugerell in her introductory remarks in ECB (2009) or Yellen (2013).  

17  The list, published on 1/11/2012, is available at http://www.financialstabilityboard.org/publications/r_121031ac.pdf. 
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also show up as large net sellers. The institutions’ ranking has remained remarkably stable 
over the past four years. Not surprisingly, the average number of incoming links and the 
average net selling position are positively and strongly correlated (Pearson coefficient of 87% 
in Fig. 11). Bank 312 clearly represents an outlier, similar to other dealers selling a large 
amount of protection to a relatively low number of participants (yellow highlights). 

Both in-strength and in-degree vary widely even across the top-20 institutions: The 
average notional protection sold in 2011 by the largest net bilateral seller is more than double 
the average amount sold by the 8th largest bank, five times that of the 20th largest, and 
twentyfold compared to the 30th largest. Thus, as already discussed for degree distribution, 
the distribution of in-strength is also extremely heavy-tailed: On average over the whole 
sample period more than 40% of the banks were net buyers of protection in a typical week; 
only seven dealers had an average net selling position higher than USD 20 billion, and only 
three higher than 30 billion (Fig. 12, upper chart).  
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Table 2 
Top-20 market participants in the CDS market for European reference entities in 2011 (by various 
network metrics, on average). In-degree measures the number of counterparties to which a firm is a 
net seller of CDS; in-strength the total net amount sold; out-degree the number of counterparties from 
which a firm is a net buyer; out-strength the total net amount bought; net-strength the firm’s net 
multilateral selling position; eigenvector centrality the interconnectedness of a firm based on the 
interconnectedness of its counterparties; betweenness the importance of a firm’s intermediation role. 

Ran
k201
1 

In-degree In-strength Out-degree 
Out-
strength 

Net 
strength 

Eigenvector 
centrality 

Between-
ness 

centrality 

1 Bank 497* Bank 312* Bank 622* Bank 497* Bank 312* Bank 497* Bank 148* 

2 Bank 622* Bank 622* Bank 148* Bank 356* AM 860 Bank 356* Bank 1172* 

3 Bank 765* Bank 765* Bank 356* Bank 317* Bank 821 Bank 1045* Bank 622* 

4 Bank 356* Bank 497* Bank 765* Bank 765* Bank 186* Bank 276* Bank 497* 

5 Bank 148* Bank 1045* Bank 317* Bank 622* Bank 622* Bank 148* AM 538 

6 Bank 317* Bank 1172* Bank 1172* Bank 148* HF 508 Bank 954* Bank 765* 

7 Bank 1172* Bank 186* Bank 497* Bank 276* Bank 656 Bank 317* Bank 356* 

8 Bank 276* Bank 148* Bank 276* Bank 136* Bank 389 HF 304 Bank 317* 

9 Bank 136* Bank 317* Bank 136* Bank 1172* Bank 1045* Bank 136* Bank 276* 

10 Bank 186* Bank 136* Bank 186* Bank 1045* Bank 627 Bank 1172* HF 673 

11 Bank 954* AM 860 Bank 954* Bank 954* AM 104 Bank 765* Bank 136* 

12 Bank 1045* Bank 356* Bank 1045* CCP 565 Bank 1176* Bank 782 Bank 186* 

13 Bank 553* Bank 821 Bank 553* Bank 553* Bank 412 Bank 289 AM 937 

14 Bank 804 Bank 553* Bank 804 Bank 289 Bank 553* AM 873 Bank 954* 

15 Bank 312* Bank 276* Bank 289 Bank 186* Bank 804 Bank 622* FS 373 

16 Bank 389 CCP 565 Bank 1176* Bank 1176* FS 920 CCP 565 AM 541 

17 Bank 782 Bank 954* Bank 312* Bank 782 FS 1075 Bank 804 Bank 553* 

18 Bank 656 HF 508 Bank 389 Bank 804 Bank 765* HF 509 Bank 1045* 

19 Bank 1176* Bank 1176* Bank 132* Bank 304 Bank 1172* HF 401 AM 621 

20 Bank 122 Bank 656 Bank 137 AM 873 Bank 628 Bank 553* AM 467 

AM stands for Asset Manager (in red in the table); HF for Hedge Fund (in blue); FS for Financial Service 
company (orange); CCP for central clearing counterparty (green); N.A. for not available; * signals that the bank 
belongs to the list of Global Systemically Important Banks (G-SIBs) identified by the Financial Stability Board. 
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Fig. 11. Average selling position against average no. of counterparties to which protection is sold 
(2008-2012) 

 

Fig. 12.  

Above: Distribution of the value of participants’ average selling positions (in-strength) over 2008-
2012. 

Below: Distribution of the value of participants’ average buying position (out- strength) over 2008-
2012.  

Hubs - net 
sellers 

Hubs - net 
buyers 

R2= 
75% 

Bank 312 
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b. Largest net bilateral buyers 

Columns 3 and 4 in Table 1 report the rankings based on institutions’ out-degree and out-
strength respectively, i.e. they identify the largest net bilateral buyers. The participants we 
identified as the top-10 net sellers are also the top-10 net buyers of CDS, which confirms that 
these market participants act mostly as market dealers. The sole exception is bank 312, the 
largest net seller in 2011, which ranks only 49th as a net buyer. If we now consider the number 
of counterparties from whom CDS protection was bought, we can see that the rankings look 
very similar to those based on in-degree: Participants who sell protection to a large number 
of counterparties typically also buy from a large number of counterparties. However, the top 
dealers are net sellers of CDS to a significantly higher number of participants than the 
number of those from whom they are net buyers. Bank 312 again represents an exception, its 
in-degree being very close to its out-degree. 

The average number of outgoing links and the average net buying position show a positive 
and strong correlation. More specifically, the net notional value of protection bought 
increases more than proportionally with respect to the number of counterparties from which 
the net protection is acquired (Fig. 13). As with node in-strength and node in-degree, out-
strength and out-degree vary significantly in the cross-section and across the top-20 market 
participants: The average notional protection bought in 2011 by the largest net buyer is more 
than double the average amount bought by the 8th largest bank and almost twentyfold 
compared to the 20th largest. The distribution of out-strength is also very heavy-tailed (Fig. 
12, lower chart) with only a few participants buying a net amount of protection much larger 
than the average (which stood at a mere USD 414 million over the whole sample). However, 
the number of firms with an average net buying position in excess of USD 20 billion was 
double the number of firms with a net selling position in excess of 20 billion. 

 

Fig. 13. Average buying position against average number of counterparties from which protection 
is bought (2008-12). 
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c. Largest net multilateral sellers 

Column 5 in Table 1 depicts the top-20 ranking based on firms’ net multilateral position in 
the CDS market. Compared with previous columns, it shows that large international banks 
acting as dealers in the market tend to carry out more netting along their short and long 
contracts. In effect, with a few exceptions their net multilateral exposures tend to be 
relatively lower. By contrast, the ranking in column 5 also shows that some non-bank 
institutions tend to hold large net exposures (in particular some asset managers and hedge 
funds). It also reveals the very high multilateral net exposure of some other banks not 
considered as G-SIBs by the FSB. 

d. Most interconnected market players by global centrality 

The global network metrics (columns 6 and 7) confirm the potential of bank-type dealers 
as super spreaders of financial contagion in CDS networks, but also indicate that a variety of 
other non-bank/non-dealer participants might similarly have super spreader potential. 
Interestingly, average eigenvector scores (column 6) are generally lower in 2011 relative to 
2010 as well as compared to the full sample average, pointing to a lower degree of network 
centralization with respect to this indicator. This finding is consistent with the overall 
decrease in network clustering discussed in section 3 and both patterns are related to the 
increasing number of buyers and sellers in the CDS market for European reference entities 
over the years. On the one hand, a larger number of buyers connected to the hub-sellers 
without being directly exposed to each other; on the other, the growing number of sellers 
meant that a larger number of hubs were less often connected in triplets. All this resulted in 
the lower eigenvector-based importance of net sellers.18 

While the top-15 participants by eigenvector centrality are mostly dealers (13 out of 15), 
the lower part of the ranking is populated by other institutions, in particular some hedge 
funds. With the exception of bank 312, the top bank dealers by in- and out-strength and by 
in- and out-degree are generally also present in the list of top-eigenvector firms. In 
particular, out-strength is strongly correlated with eigenvector centrality, resulting in two 
very similar rankings for these two indicators (at least in the first twenty places of the list). 
However, in contrast to the previous rankings and like the ranking based on net multilateral 
positions, the eigenvector list for 2011 includes in the top-15 participants two non-dealers. 
These are net multilateral buyers of CDS protection (asset manager 873 and hedge fund 304). 

Considering the ranking based on average betweenness centrality over the full sample 
period or in 2011, we find that the top-10 list is almost identical to the list of the ten banks 
with the highest in-degree (with the sole exception of hedge fund 673, which does not appear 
in any of the other rankings). Average betweenness scores for 2011 broadly increased relative 
to the full sample average and compared to 2010. Such increased betweenness is consistent 
with lower eigenvector centrality: The higher number of peripheral buyers surrounding the 
largest hub-sellers makes the latter relatively less important because of their relatively fewer 
connections to other hubs and more numerous connections to the peripheral institutions 
(thus reducing their eigenvector centrality), but relatively more important because they stand 
between a higher proportion of paths connecting any two buyers (thus increasing their 
betweenness). 

4.2.2. Financial stability implications 

The rankings analysed in this section show clearly that large international banks (many 
belonging to the list of G-SIBs) are among the largest net bilateral sellers and buyers of CDS 
protection and are exposed to a much higher number of counterparties compared to the vast 

                                                        
 
18  The Spearman’s rank correlation coefficient for in-strength and eigenvector centrality decreased from 17% in 2008 to 1% 

in 2011. The null hypothesis of independence between the two variables can be rejected at 1% significance in 2008, but not 
from 2009 to 2011. 
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majority of other market participants. Acting as dealers, however, they tend to carry out more 
netting along their short and long contracts, so that with a few exceptions their net 
multilateral exposures tend to be relatively lower. Interestingly, asset managers and hedge 
funds also show up in the rankings, particularly in those based on global network centrality 
indicators. The latter displayed a large variation over the four years, while the rankings based 
on local network centrality remained remarkably stable. The largest net buyer and seller 
positions are rather balanced in our data; however, the high asymmetry revealed between the 
number of firms with a very large net buying position and the number of firms with a very 
large net selling position (14 firms versus 7) again points to the major role of CDS sellers in 
the market. 

Finally, the positive correlations between certain local and global network measures (more 
specifically, between in-degree and betweenness, and between out-strength and eigenvector, 
see Table 3) point to the key role played in the spread of contagion by highly interconnected 
sellers and by large buyers. The potentially more important role of highly interconnected 
sellers is driven by the fact that sellers with many counterparties indirectly connect many 
participants who are not otherwise directly exposed to each other (i.e. they typically have also 
a high betweenness); in the case of large buyers, the more important contagion factor is 
related to the fact that the largest buyers are linked to other highly interconnected 
participants (i.e. they typically have a high eigenvector), so that a shock hitting one of the key 
players could radiate rapidly to more key players, thus endangering the connectedness of the 
whole network. 

Table 3 
Pearson’s / Spearman’s correlation coefficients between different centrality measures (average over 
2008-2012) 

 
In-strength Out-strength  

Net-
strength 

In-degree  Out-degree 
Eigen-
vector 

In-strength       

Out-strength 80% / 13%      

Net-strength 35% / 28% -28%/-75%     

In-degree 87% / 98% 95% / 8% -9% / 31%    

Out-degree 83% / 16% 92% / 81% -12%/-59% 94%/13%   

Eigenvector 62% / 9% 90% / 97% -40%/-76% 79% / 5% 79%/80%  

Betweenness 74% / 59% 84% / 29% -12% / 3% 88%/64% 85%/45% 68%/26% 

 

To complete this section, we compare the outcome of our analysis with a set of indicators 
derived from market prices. Standard measures, such as the Marginal Expected Shortfall 
(MES), the contribution-CoVaR, the exposure-CoVaR, the contribution-CoCDS and the 
exposure-CoCDS (which use the same logic as the CoVaR measures but are based on CDS 
spreads instead of equity returns), have been estimated as part of the work reported in 
Brunnermeier et al. (2013)19. The comparison is based on cross-sectional correlation 
coefficients calculated at two different points in time (January 2010 and January 2012, see 
Table 4). 

                                                        
 
19  The Marginal Expected Shortfall (MES) of an institution can be defined as its expected equity loss when the market itself is 

in its left tail (Acharya et al. 2012). The CoVaR represents the Value-at-Risk (VaR) of the financial system conditional on 
institutions being under distress (Adrian and Brunnermeier, 2011). The contribution-CoVaR is based on equity returns 
and obtained from quantile regressions of the system on all individual institutions; it thus measures the marginal risk 
contribution of each firm to overall systemic risk. The exposure-CoVaR switches the conditioning of the quantile 
regressions, thus measuring which firms are most exposed when the financial system as a whole is under distress. 
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The table shows very mixed results and no clear correlations but for a couple of price 
derived measures. For instance, the contribution-CoVaR based on equity returns (as well as 
the marginal capital shortfall), which expresses the marginal risk contribution of each firm to 
overall systemic risk, is always positively correlated with all four exposure-based (network 
centrality) measures at a relatively high level. One can also note the negative correlation 
between the CDS spreads and the exposure-based measures. One interpretation is that CDS 
spreads reflect the "too-big-to-fail" phenomenon and consequently factor in the implicit 
subsidy provided by almost certain bail out of systemic institutions. The other measures 
display rather ambiguous and non robust signs. One explanation resides in the fact that 
exposure measures are rather stable while price measures are rather volatile. Finally, price-
based measures are likely to also capture informational channels of contagion, while network 
measures mostly capture contagion due to position-based interdependencies. 

 

Table 4 
Correlations between market price-based and exposure-based measures in January 2010 and January 
2012. The values of MES, relative capital shortfall and market value are considered in logs of their USD 
values. 

(06 Jan 2012) 
Eigen-
vector 

Between-
ness 

Selling 
exposure 

(in-strength) 

Number of 
counterparties to 
which CDS are sold 

(in-degree) 

Contribution CoVaR 0.542 0.545 0.688 0.635 

Exposure CoVaR 0.031 -0.069 0.106 -0.013 

Contribution CoCDS 0.043 -0.277 0.048 -0.300 

Exposure CoCDS -0.184 -0.247 -0.214 -0.305 

CDS spread -0.237 -0.312 -0.204 -0.330 

MES value  0.138 -0.089 0.251 -0.013 

Relative capital shortfall 0.639 0.583 0.712 0.643 

Market value 0.107 0.266 0.202 0.220 

(08 Jan 2010) 
Eigen-
vector 

Between-
ness 

Selling 
exposure 

(in-strength) 

Number of 
counterparties to 
which CDS are sold 

(in-degree) 

Contribution CoVaR 0.118 -0.086 0.105 0.016 

Exposure CoVaR 0.174 -0.088 0.093 0.030 

Contribution CoCDS 0.012 -0.412 -0.138 -0.294 

Exposure CoCDS -0.060 -0.344 -0.200 -0.243 

CDS spread -0.233 -0.220 -0.269 -0.266 

MES value 0.130 0.070 0.076 0.086 

Relative capital shortfall 0.579 0.216 0.704 0.623 

Market value 0.245 0.273 0.371 0.369 

Source: Brunnermeier et al. (2013) 
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5. Resilience of the bank super spreaders identified 

In this section, we relate the bank-type participants that are the most central identified in 
the networks of CDS exposures to indicators of their financial soundness. We consider, 
firstly, the statistical correlation between measures of centrality and various balance sheet 
items – (book value of) total common equity, total assets, last equity price, last CDS spread 
(basis points premium payment per year), and bank leverage (computed as the value of total 
common equity divided by total assets). Secondly, we compute an indicator of financial 
soundness for the largest bilateral and multilateral net sellers. 

5.1. Correlations between centrality and selected balance sheet items 

We find that large CDS sellers and buyers are on average perceived as safer by the market 
in 2011 (they have a lower CDS spread at year-end), and banks selling protection to a higher 
number of counterparties have on average a higher market value and hold a lower amount of 
capital; not surprisingly, both large sellers and buyers of protection are on average bigger 
institutions. The banks holding larger net multilateral exposures tended to perform worse in 
the stock market in 2011 and were less well capitalised (Table 5). 

Table 5 
Correlation between selected centrality indicators and balance sheet items in 2011 

 

5.2. Super spreaders’ risk bearing capacity 

Table 6 looks at the ratio between the aggregate CDS position of top bank players and their 
total common equity in 2011. This is reported for (i) the 20 largest net bilateral sellers 
(columns 1 and 2); (ii) the 20 largest net bilateral buyers (columns 3 and 4); (iii) the 20 
largest net multilateral sellers (columns 5 and 6). Net bilateral selling positions relative to 
total common equity exhibit very large variation across banks and, although the ratios refer 
to banks’ risk-bearing capacity in the highly implausible scenario in which all the seller’s 
counterparties default, some of them do seem alarmingly high (e.g. above 65% for bank 821 
and bank 656). Net bilateral buying positions relative to total common equity similarly 
display significant variation across banks. Three ratios are particularly high (94% for bank 
317, 67% for bank 497, 63% for bank 356). The last column in the table shows the alarmingly 
high ratios revealed in the previous columns persisting even after netting, although they are 
slightly reduced. This confirms once again the key role played by the largest net (bilateral and 
multilateral) sellers. 

  

Year 2011 
CDS net selling 
position 

(in-strength) 

CDS net buying 
position 

(out-strength) 

CDS net 
multilateral selling 
position 

(net-strength) 

Total common equity 45% 38% 7% 

Total assets 55% 45% 11% 

Last stock price (as of 31/12/2011) 37% 54% -25% 

Last CDS spread (as of 31/12/2011) -19% -20% 2% 

Leverage (Common equity / Total 
assets) 

-4% 
0% -5% 
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Table 6 
Financial soundness of the top 20 banks largest net sellers and buyers of  CDS protection in 2011. 
The indicator considered is the ratio between the notional amount of aggregate net CDS exposures 
(Expo.) and total common equity (TCE). AM stands for Asset Manager (in red in the table); HF for 
Hedge Fund (in blue); FS for Financial Service company( orange); CCP for central clearing 
counterparty (green); N.A. for not available; * signals that the bank belongs to the G-SIBs identified by 
the Financial Stability Board. 
Rank 

2011 

Largest net bilateral 

CDS sellers 

Largest net bilateral 

CDS buyers 

Largest net multilateral 

CDS sellers 

 Ranking Expo./TCECE Ranking E/Expo./TCETCE Ranking Expo./TCE./TCE 

1 Bank 312* 45% Bank 497* 67% Bank 312* 44% 

2 Bank 622* 23% Bank 356* 63% AM 860 N.A. 

3 Bank 765* 56% Bank 317* 94% Bank 821 66% 

4 Bank 497* 41% Bank 765* 53% Bank 186* 17% 

5 
Bank 

1045* 
48% Bank 622* 15% Bank 622* 8% 

6 
Bank 

1172* 
41% Bank 148* 28% HF 508 N.A. 

7 Bank 186* 26% Bank 276* 13% Bank 656 65% 

8 Bank 148* 23% Bank 136* 10% Bank 389 90% 

9 Bank 317* 55% Bank 1172* 38% Bank 1045* 12% 

10 Bank 136* 9% Bank 1045* 36% Bank 627 N.A. 

11 AM 860 N.A. Bank 954* 13% AM 104 N.A. 

12 Bank 356* 24% CCP 565 N.A. Bank 1176* 12% 

13 Bank 821 66% Bank 553* 7% Bank 412 18% 

14 Bank 553* 8% Bank 289 32% Bank 553* 1% 

15 Bank 276* 7% Bank 186* 9% Bank 804 8% 

16 CCP 565 N.A. Bank 1176* 20% FS 920 N.A. 

17 Bank 954* 10% Bank 782 19% FS 1075 N.A. 

18 HF 508 N.A. Bank 804 15% Bank 765* 3% 

19 
Bank 

1176* 
32% Bank 304 N.A. Bank 1172* 3% 

20 Bank 656 67% AM 873 N.A. Bank 628 N.A. 

 

We then consider the ratio of banks’ net selling exposure per individual reference entity to 

their total common equity. Table 7 lists the nine net exposures representing more than 9% of 

bank capital. Note that while we had already identified banks 821, 656 and 389 due to their 

comparatively large aggregate net exposures relative to common equity in the previous 

tables, Table 7 highlights another two banks whose exposures merit careful monitoring: for 

bank 121 one net selling exposure on a single entity is particularly large relative to its capacity 

to withstand a negative shock on the underlying CDS reference; bank 127 is exposed to two 

different non-financial entities for about 9% of its common equity. 
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Table 7 
Largest (above 9%) net selling positions on single reference entities relative to total common equity 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we consider the level of leverage (total common equity divided by total assets) of 
the top-9 or top-18 banks identified as largest net multilateral sellers relative to a set of 
another 81 banks. Fig. 14 (left-hand side) shows that the 18 bank super spreaders tended to 
hold a lower buffer of equity per dollar of assets than the other banks. While the largest bank 
sellers increased their equity-to-asset ratio over time (the average grew from 4% in 2008 to 
5.1% in 2011), it remained lower than the equity buffer of the other banks in the sample. It is 
also interesting to note that the 9 banks largest net sellers of CDS protection (all of which are 
G14 dealers and G-SIBs) typically held a slightly higher equity ratio than the top-18. 
However, this changed end 2011, when the top-9 reported an average ratio 0.3% below the 
equity ratio of the top-18 banks.  

If we now consider the average ratio across the different types of potential super spreaders 
identified – largest net bilateral sellers, largest net bilateral buyers, and largest net 
multilateral sellers – we find that the top bilateral sellers and buyers of CDS protection were 
on average less capitalised than the top multilateral sellers in 2008 but became better 
capitalised in 2009, 2010 and 2011. The higher equity buffer of the top sellers and top buyers 
in 2011 (5.5% against 5% for the top multilateral sellers) seems to be driven by the presence 
in those rankings of some other big bank-dealers that are missing in the list of participants 
with largest net multilateral exposures. However, it remains to be established whether this 
indicator is indeed an appropriate means of diagnosing financial vulnerability and whether, 
over time, it will prove a reliable early warning indicator of financial distress. 

Bank 
Sector of single EU 
reference entity 

Ratio of net selling position to 
total common equity 

Bank 821 Sovereign 28.8% 

Bank 656 Sovereign 16.0% 

Bank 121 Financials 14.7% 

Bank 389 Sovereign 12.0% 

Bank 389 Sovereign 10.1% 

Bank 765 Sovereign 9.5% 

Bank 127 Non-Financials 9.3% 

Bank 127 Non-Financials 9.1% 

Bank 389 Sovereign 9.1% 
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Fig. 14. Left: Leverage of the bank super spreaders identified versus other banks.  

Right: Leverage of the top net bilateral sellers, top net bilateral buyers, and top net multilateral sellers. Leverage 
is computed as the ratio between banks’ total common equity and total assets. The bank super spreaders in the 
left-hand side chart are the largest net multilateral sellers. The shaded area represents the interquartile range for 
the entire sample of banks. 

6. Conclusions 

The structural features revealed suggest that the network of CDS exposures would, in most 
cases, be resilient to failure. The likelihood of one of the most interconnected players being 
affected by a random shock is almost negligible; and even if a major player were hit, the 
network might possibly continue functioning thanks to the other highly interconnected hubs. 
However, were more than one major player to be affected simultaneously, the network would 
lose its connectedness – with potentially grave consequences. Ensuring their safety is thus 
potentially the best way to safeguard the system’s resilience to failures. While, to the best of 
our knowledge, a similar study of the structural aspects of networks of CDS exposures is not 
yet available for reference entities of other geographical areas, a comparison with the 
structural features of other systems would certainly be of great interest. 

The most common network centrality measures used in this paper point to the key role 
played in spreading contagion by (i) net sellers to a large number of counterparties which 
indirectly connect many participants not otherwise directly exposed to one another, and by 
(ii) large net buyers whose links to large net sellers pose a greater potential risk of a shock 
that hits one of the key players rapidly spreading to other major participants, thus 
endangering the connectedness of the whole network. In addition, while the analysis of these 
indicators confirms bank-type dealers’ potential as super spreaders of financial contagion, it 
also pinpoints a variety of other non-bank/non-dealer market participants with super 
spreader potential, in particular some asset managers and hedge funds. 

Our analysis confirms that all the institutions participating in the CDS market are 
interconnected by a complex liability structure that is highly concentrated among the largest 
bank-dealers. These large banks perform significantly more netting of their long and short 
contracts within their CDS portfolios. As a result of this intermediary role, the banks possess 
gross notional positions far in excess of their net notional holdings. For some of them, 
however, multilateral net exposures represent a significant amount relative to their core 
common equity. They also tend to hold, on average, a lower buffer of equity per dollar of 
assets than the other banks, i.e. they are highly leveraged. 

Many of these large banks belong to the “G14 - G15” group of global derivatives dealers 
and have been identified by the Financial Stability Board as Global Systemically Important 
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Banks. As a result, they will be subject to additional capital requirements which may mitigate 
the risk of failure or contagion. However, we must emphasize that it is difficult to assess the 
scope for contagion by looking at CDS exposures alone. In effect, contagion depends on total 
exposures, resulting either directly or indirectly from correlated assets for instance, and not 
just from credit default swaps. In addition, financial institutions may take offsetting positions 
through other derivatives. Proper contagion analysis therefore requires a more 
comprehensive approach to counterparty and network risks. 

Besides banks, another issue is proper monitoring of institutions such as asset managers 
and hedge funds, which are playing a growing systemic role in the CDS market. This is all the 
more important because their more prominent role may be partly due to regulatory arbitrage. 
While the links represented by some of these asset managers are not numerous, they are  
large, and there is no overlap between sellers and buyers. Ongoing regulatory initiatives may 
also attenuate or mitigate systemic risk.20 For instance, widespread use of clearinghouses 
could mitigate counterparty credit risk inasmuch as most CDS are centrally clearable. This 
would certainly have a major impact on network structures and help reduce their complexity. 
However, increasing the role of central clearing counterparties places particular emphasis on 
the quality of their risk-bearing capacity and their collateral management. The scope for 
contagion might also be reduced by setting minimum liquid reserve requirements in respect 
of critical receivables or by limiting large exposures for nodes that act as counterparties to a 
large number of contracts. In this respect it is important accurately to factor in the network 
characteristics and properties of interbank exposures, since there might be critical side 
effects affecting both market intermediation and liquidity. 

Finally, access to supervisory data and the exchange of information between key 
supervisors is of the utmost importance in this context, both to facilitate monitoring and to 
increase the transparency of the CDS market. Our results underline the importance of 
regularly monitoring outstanding positions.  

                                                        
 
20  The main regulation covering CDS in Europe is the European Market Infrastructure Regulation (EMIR), which entered 

into force on 16 August 2012. EMIR establishes rules for the central clearing of OTC derivatives and for transaction record 
keeping. The proposal covers all types of OTC derivatives, including CDS. See Brunnermeier et al. (2013). 
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Appendix A: Network theory – basic concepts, structural measures and network 
centrality 

Basic concepts 

A network gt at time t is defined by two sets: the set of nodes N = {1,..., n} and the set L of 
unordered pairs of elements (i , j) representing edges or links between them. More precisely, 
a CDS network gt ≡ gt(N, L) is a directed graph where each link is a net exposure between two 
institutions at time t and is represented mathematically by the N-square adjacency matrix 
G(gt) = {gij,t} where gij,t = 1 if node i is a net buyer of protection from node j at time t, and gij,t 
= 0 otherwise (by convention gii,t = 0). If two institutions i and j are directly exposed, i.e. gij,t 
= 1, then i and j are neighbours or adjacent. For a given network g, even if i and j are not 
directly exposed (i.e. gij = 0), they may still be indirectly connected if there is a path from i to 
j. A path is a sequence of nodes [i0, i1, ... , ik] starting from i and terminating at j (i.e. i0 = i and 
ik = j) such that gi,i+1 =1 for all 0 ≤ s ≤ k-1. Thus, a path is an ordered sequence where node is 
and node is+1 are directly exposed. Finally, a weighted network can also be represented, next 
to G(gt), by the weighted adjacency matrix W(gt) = {wij,t}, where each link between i and j is 
weighted by the net CDS position wij,t . In the following we omit the subscript t to make 
notation less cumbersome. 

Structural network measures 

Connectivity. The most basic topological properties of a network are the number of nodes 
n (i.e. the cardinality of the set N), and the number of links m connecting the nodes. The ratio 
of actual to potential links between the nodes is known as the density or connectivity of the 
network. Formally: 

 

This ratio ranges from 0 to 1, with higher values denoting “denser” networks. In the limiting 
case in which every possible pair of nodes is connected by an edge, the graph is complete. 

                                                    

   A. Complete network     B. Incomplete (cycle) network 

Node degree. In a directed graph, both the out- and the in-degree of a node can be 
computed: the out-degree is the number of links originating from a node; the in-degree is the 
number of links terminating at it. The distribution of node degree is a key structural property 
of a network. 

 

and      

In the CDS networks of this paper, the in-degree of participant i is the number of 
institutions to whom i sells CDS protection (meaning that in-degree is zero for net buyers), 
while the out-degree of i is the number of participants from whom it buys CDS. 

Average shortest path length. There may be several different paths connecting two nodes 
in a network. The distance between any node i and any node j is the length of the shortest 
such paths (i.e. the minimum number of links) between them. The average shortest path is 
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the mean distance separating a node from all other nodes within the same connected 
component.21 That is: 

 

The average shortest path length of the whole network is then computed by taking the 

average of the  across all nodes i, and represents a measure for the average length of 

intermediation chains: 

 

Diameter. The diameter of a network is the maximum distance between any pair of nodes; 
it can thus range between 1, if every node is directly linked to each of the others, and n-1. 

Assortative mixing or assortativity. This indicator measures the tendency of nodes to 
attach to similar nodes in the network based on certain values assigned to them. A high and 
positive coefficient indicates that participants linked to each other tend to have similar 
assigned values, whereas a negative coefficient indicates the opposite. In our analysis, we 
consider node degree in order to assess whether highly connected participants tend to 
associate with other highly connected institutions or not. 

More specifically, we define a quantity exy which is the fraction of all exposures in the 
network that join together institutions with values x and y for their out-degree (i.e. the 
number of counterparties from which they buy CDS protection) and satisfies the following 
sum rules: 

,  ,  

where ax and by are, respectively, the fraction of CDS selling and buying positions of 
institutions with values x and y. Then, if there is no assortative mixing exy = axby . If there is 
assortative mixing it can be calculated via the standard Pearson correlation coefficient (see 
Newman, 2003): 

 

where sa and sb are the standard deviations of the distributions ax and by. The value of 
assortativity ranges from -1 to 1: a correlation coefficient equal to 1 indicates perfect 
assortativity, while a coefficient equal to -1 indicates perfect negative correlation between the 
number of counterparties of CDS buyers and CDS sellers. 

Clustering. The clustering coefficient measures the probability that two nodes with a 
common neighbour will themselves be neighbours (i.e. themselves be directly exposed). 
Formally, the clustering coefficient measures the frequency of transitive triads in a graph, i.e. 
the frequency of groups of three nodes linked in such a way that whenever i  j and j  k 
then also i  k (i.e. whenever i buys CDS from j ,which in turn buys from k, then i and k are 
also directly exposed). In the CDS networks the clustering coefficient measures the average 
fraction of net sellers j and k selling CDS to the net buyer i that are counterparties of each 
other. In formulae: 

                                                        
 
21  A component is a sub-network where all the nodes are directly or indirectly connected (i.e. reachable). 
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for each node and 

for the whole network. 

Measures of local centrality 

The first centrality indicators we consider in the analysis are also known in literature as 
measures of local centrality because they take into account only a node’s direct links, i.e. they 
measure a node centrality in its local neighbourhood. These are the unweighted and the 
weighted degree. 

Node degree. In a directed graph the out-degree of a node is the number of links 
originating from it; the in-degree is the number of links terminating to it. 

and  

In social network analysis both these indicators have been used to measure a node’s 
importance in its neighbourhood of social acquaintances. In the CDS networks of this paper, 
the in-degree of participant i is the number of institutions to whom i sells CDS protection, 
while the out-degree of i is the number of participants from whom it buys CDS. 

Possibly more suited to our purposes are the weighted versions of node in- and out-
degree, which we call in-strength and out-strength. These are computed by weighting the 
links based on net bilateral exposures (wij). More specifically, 

 

represents the sum of the net selling positions of node i (i.e. the sum of all positions in which 
node i is a net seller); while 

 

represents the sum of the net buying positions of node i (i.e. the sum of all positions in which 
node i is a net buyer). Thus, 

 

represents the net multilateral position of node i. 

Measures of global centrality 

Global centrality metrics, taking into account both the direct and the indirect exposures of 
a node, are possibly more suited to capture the prominence of CDS participants in the 
network structure. 

Betweenness centrality. A node with high betweenness is one that is often situated on the 
shortest paths connecting other nodes (Freeman, 1979). It is defined as the sum of the 
fraction of all shortest paths between any two nodes j and k that pass through node i, thus 
providing an indication of the exclusivity of the position of i in the overall network. In 
formulae: 

 

where ajk|i denotes the number of shortest paths between j and k that includes i and ajk is the 
total number of shortest paths between j and k. The denominator represents the maximum 
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number of pairs of nodes not including i, thus allowing for a normalized version of the 
indicator. 

Eigenvector centrality. All the centrality indicators described so far are path-based, i.e. 
they rest on the premise that a given node (or a link) can appear only once in the sequence 
connecting two nodes; that is, nodes are connected via paths. This means that in the CDS 
networks of this paper all the centrality measures described identify the most central market 
players on the assumption that, for example, a shock could spread through net CDS 
exposures by passing each node (or link) only once. 

However, other indicators developed in graph theory place no restrictions on the number 
of times that a node (or link) can appear in the sequence connecting two nodes; in this case, 
nodes are connected via walks. One of these measures is eigenvector centrality (Bonacich, 
1972). In the context of assessing contagion stemming from CDS exposures, this measure 
could provide an indication of which nodes would be more important in the propagation of a 
shock when taking into account the knock-on effects that may follow a shock. Indeed, 
eigenvector centrality computes the relative influence of node i within the network by 
measuring the number of institutions that are directly exposed to it and also of all other 
participants that sell to node i through these immediate neighbours (sellers). Mathematically, 
eigenvector centrality is defined as the principal eigenvector of the adjacency matrix that 
represents the (internally connected) network. The defining equation is: 

λv = Gv 

where G is the adjacency matrix of the graph with eigenvalues λ, and v is the eigenvector. 
Thus the eigenvector centrality of node i is: 

 

where α < 1/ λmax  and represents an attenuation factor that allows to penalize exposures to 
distant sellers, i.e. to sellers of sellers...of node i. In its unweighted and undirected form, it 
represents an iterative version of degree centrality, according to which a node’s global 
centrality depends iteratively on the interconnectedness of its counterparties. 

To conclude, it is worth emphasizing that the formulas for the different centrality 
measures make implicit assumptions about the manner in which a given process of interest 
flows in a network. This means that the canonical interpretations we give to the measures are 
valid to the extent that “traffic” flows in certain ways in the system analysed (see Borgatti, 
2005). In the graphs of our CDS analysis the most common centrality indices based on direct 
linkages between the nodes (i.e. degree and strength) seem well suited for the purpose of 
identifying potential super spreaders. More complex indicators, such as betweenness and 
eigenvector centrality, are very interesting to examine in view of the additional information 
they may provide compared to the former measures, but in evaluating them the main 
assumptions underlying their computation should be kept in mind.  

1  ij jii greigenvecto 
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Appendix B: Summary network statistics 

The following tables report yearly summary statistics (average, minimum, maximum, and 
standard deviation) for the three sectoral sub-networks (i.e. Financials, Non-Financials, and 
Sovereigns) from 2008 to 2012. 

Table 8 
Summary statistics for the networks of CDS on financial reference entities 

Year 2008 2009 2010 2011 2012a 

Nodes (avg) 

  Min 

  Max 

  St. Dev. 

330 

289 

349 

12 

329 

310 

343 

9 

379 

327 

416 

27 

425 

405 

445 

11 

441 

438 

443 

- 

Links (avg) 

  Min 

  Max 

  St. Dev. 

1571 

1334 

1679 

90 

1601 

1556 

1697 

38 

1770 

1657 

1862 

59 

1888 

1844 

1968 

32 

1900 

1876 

1916 

- 

Density (avg) 

  Min 

  Max 

  St. Dev. 

1.45% 

1.38% 

1.60% 

0.05% 

1.49% 

1.38% 

1.63% 

0.06% 

1.25% 

1.07% 

1.56% 

0.15% 

1.05% 

0.97% 

1.13% 

0.04% 

0.98% 

0.97% 

0.99% 

- 

Assortativity (avg) 

  Min 

  Max 

  St. Dev. 

-68.6% 

-70.3% 

-66.5% 

1.1% 

-69.4% 

-71.2% 

-68.6% 

0.6% 

-69.4% 

-70.4% 

-68.3% 

0.5% 

-71.3% 

-73.1% 

-70.0% 

0.9% 

-72.0% 

-72.4% 

-71.6% 

- 

Average shortest distance 
(avg) 

  Min 

  Max 

  St. Dev. 

2.56 

2.50 

2.61 

0.03 

2.50 

2.46 

2.53 

0.02 

2.53 

2.46 

2.59 

0.03 

2.56 

2.54 

2.59 

0.01 

2.55 

2.54 

2.55 

- 

Diameter (avg) 

  Min 

  Max 

  St. Dev. 

5 

5 

5 

0 

5 

4 

5 

0 

5 

5 

6 

0 

5 

4 

5 

0 

5 

4 

5 

- 

Clustering coeff. (avg) 

  Min 

  Max 

  St. Dev. 

20.2% 

19.4% 

22.2% 

0.6% 

20.3% 

19.0% 

21.4% 

0.7% 

17.6% 

15.1% 

20.4% 

1.4% 

14.6% 

13.8% 

15.2% 

0.4% 

13.8% 

13.7% 

13.9% 

- 

a The data for 2012 cover only the first four weeks of the year. This is why we do not report the standard deviation. 
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Table 9 
Summary statistics for the networks of CDS on non-financial reference entities 

Year 2008 2009 2010 2011 2012a 

Nodes (avg) 

  Min 

  Max 

  St. Dev. 

374 

338 

396 

16 

399 

379 

437 

16 

453 

430 

484 

18 

480 

471 

493 

5 

486 

483 

490 

- 

Links (avg) 

  Min 

  Max 

  St. Dev. 

2095 

1882 

2194 

74 

2199 

2068 

2399 

86 

2408 

2347 

2463 

31 

2408 

2355 

2448 

23 

2446 

2432 

2462 

- 

Density (avg) 

  Min 

  Max 

  St. Dev. 

1.50% 

1.36% 

1.65% 

0.08% 

1.38% 

1.25% 

1.48% 

0.06% 

1.18% 

1.03% 

1.29% 

0.08% 

1.05% 

1.00% 

1.09% 

0.02% 

1.04% 

1.03% 

1.04% 

- 

Assortativity (avg) 

  Min 

  Max 

  St. Dev. 

-70.6% 

-72.1% 

-68.4% 

0.8% 

-68.6% 

-70.1% 

-67.3% 

0.7% 

-69.0% 

-70.8% 

-67.9% 

0.9% 

-71.8% 

-72.7% 

-70.5% 

0.6% 

-70.8% 

-71.1% 

-70.6% 

- 

Average shortest distance 
(avg) 

  Min 

  Max 

  St. Dev. 

2.51 

2.46 

2.53 

0.02 

2.47 

2.45 

2.51 

0.01 

2.49 

2.45 

2.53 

0.02 

2.53 

2.52 

2.55 

0.01 

2.53 

2.52 

2.53 

- 

Diameter (avg) 

  Min 

  Max 

  St. Dev. 

5 

4 

5 

0 

5 

5 

5 

0 

5 

5 

5 

0 

5 

5 

5 

0 

5 

5 

6 

- 

Clustering coeff. (avg) 

  Min 

  Max 

  St. Dev. 

19.0% 

17.8% 

20.9% 

0.8% 

17.5% 

16.9% 

18.2% 

0.4% 

16.1% 

14.5% 

17.1% 

0.8% 

14.4% 

13.7% 

14.7% 

0.3% 

13.8% 

13.7% 

13.9% 

- 
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Table 10 
Summary statistics for the networks of CDS on sovereign reference entities 

Year 2008 2009 2010 2011 2012a 

Nodes (avg) 

  Min 

  Max 

  St. Dev. 

219 

150 

266 

29 

302 

255 

357 

24 

454 

364 

499 

37 

532 

501 

563 

17 

549 

545 

552 

- 

Links (avg) 

  Min 

  Max 

  St. Dev. 

777 

519 

962 

111 

1105 

936 

1309 

87 

1632 

1323 

1831 

126 

1951 

1826 

2119 

70 

1933 

1921 

1940 

- 

Density (avg) 

  Min 

  Max 

  St. Dev. 

1.66% 

1.33% 

2.36% 

0.23% 

1.22% 

1.03% 

1.45% 

0.10% 

0.80% 

0.72% 

1.02% 

0.08% 

0.69% 

0.65% 

0.73% 

0.02% 

0.64% 

0.63% 

0.65% 

0.01% 

Assortativity (avg) 

  Min 

  Max 

  St. Dev. 

-62.4% 

-66.1% 

-52.5% 

3.3% 

-65.2% 

-67.0% 

-63.1% 

1.2% 

-67.6% 

-69.7% 

-64.9% 

1.2% 

-69.2% 

-70.7% 

-67.4% 

0.8% 

-67.6% 

-67.7% 

-67.4% 

0.2% 

Average shortest distance 
(avg) 

  Min 

  Max 

  St. Dev. 

2.53 

2.49 

2.60 

0.03 

2.50 

2.46 

2.58 

0.02 

2.56 

2.51 

2.60 

0.02 

2.57 

2.54 

2.62 

0.02 

2.59 

2.59 

2.60 

- 

Diameter (avg) 

  Min 

  Max 

  St. Dev. 

5 

4 

5 

0 

5 

4 

5 

0 

5 

5 

5 

0 

5 

5 

6 

0 

5 

5 

5 

- 

Clustering coeff. (avg) 

  Min 

  Max 

  St. Dev. 

22.5% 

18.5% 

28.8% 

2.4% 

16.7% 

14.7% 

18.9% 

0.8% 

12.5% 

11.4% 

14.4% 

0.7% 

10.8% 

9.9% 

11.5% 

0.4% 

10.7% 

10.6% 

10.8% 

- 
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Appendix C: Scale-free systems and fit of CDS positions to a power-law 
distribution 

A scale-free network is a network whose degree-distribution follows a power law, i.e. the 
percentage P(k) of nodes in a network with k connections to other nodes is denoted for large 
values of k as: 

 kkP )(  

where α is a parameter whose value is typically in the range 2 < α < 3. 

A power law distribution is heavy-tailed, with some nodes having many more connections 
than others (Fig. 10 provides an illustration of a simple scale-free network). The highest-
degree nodes were called “hubs” by Barabási (2001), who mapped the topology of World 
Wide Web links. Subsequently, many other real-world networks were found (or claimed) to 
exhibit power-law degree distribution for various values of α and for large k. Albert and 
Barabási (2002) proposed a generative mechanism to explain the appearance of power-law 
distributions, which they called “preferential attachment”22. 

Table 10 reports the results of the Kolmogorov-Smirnov test that we performed to assess 
whether the (weighted) CDS links studied in this paper trace a power-law distribution in the 
tail, i.e. for net bilateral positions wij larger than a certain threshold value. We proceed as 
follows: 

 First, as shown in Goldstein, Morris and Yen (2004) we fit our net bilateral positions 
(all net selling positions in the first week of each year) to a power-law distribution 
using maximum likelihood estimation (MLE). We estimate both the minimum net 

position 
min

ijw  and the value of α for which the positions are distributed, starting from 

that threshold, as a power law (α). 

 Second, we perform the Kolmogorov-Smirnov test given in Clauset, Shalizi and 
Newman (2009) to evaluate the goodness-of-fit of our empirical distribution to a 
theoretical power law governed by the parameters estimated by MLE in the previous 
step. 

  

                                                        
 
22  “Scale-free” refers to the fact that the distribution remains (approximately) unchanged under a rescaling of node degree by 

a multiplicative factor (i.e., if x nodes have degree k in the network, then α × x nodes will have degree β × k for some α, 
β<1). See among others Dorogovtsev and Mendes (2003). 
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Table 11 
Results of the Kolgomorov and Smirnov test of goodness-of-fit to a theoretical power law (α) 

 
min

ijw (USD) α 
Kolmogorov-
Smirnoff test 
statistics 

Result 
Size of 
the tail 

Size in % 

Jan-08 460,000,000 1.60 0.0710 
fail to 
reject 

68/223 30% 

Jan-09 884,718,544 1.62 0.1075 
fail to 
reject 

56/213 26% 

Jan-10 513,575,000 1.55 0.0870 
fail to 
reject 

71/259 27% 

Jan-11 123,024,009 1.48 0.0593 
fail to 
reject 

123/327 38% 

Jan-12 163,500,000 1.53 0.0611 
fail to 
reject 

124/366 34% 

 

The results show that, for every year, the test statistics computed on the empirical 
distribution do not permit rejection of the hypothesis that net multilateral exposures larger 
than the estimated threshold are distributed according to a power law with given α. Looking 
at the evolution over time in the number of net exposures forming the tail, we observe that 
30% of the largest net positions belonged to the tail in the first week of 2008 against 38% in 
2011, suggesting a higher concentration of net multilateral CDS positions in 2011 than in 
2008. However, this concentration was somewhat reduced again in the first week of 2012.  
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Appendix D: Top-20 market participants in the CDS market for European 
reference entities  

Table 12:  
Top-20 market participants in the CDS market for European reference entities (by various network 
metrics, on average over 2008-2012). In-degree measures the number of counterparties to which a 
firm is a net seller of CDS; in-strength the total net amount sold; out-degree the number of 
counterparties from which a firm is a net buyer; out-strength the total net amount bought; net-
strength the firm’s net multilateral selling position; eigenvector centrality the interconnectedness of a 
firm based on the interconnectedness of its counterparties; betweenness the importance of a firm’s 
intermediation role. 

Rank
2008
- 

2012 

In-degree In-strength Out-degree 
Out-
strength 

Net 
strength 

Eigenvector 
centrality 

Between-
ness 

centrality 

1 Bank 497* Bank 622* Bank 622* Bank 497* Bank 312* Bank 497* Bank 622* 

2 Bank 622* Bank 312* Bank 356* Bank 356* Bank 622* Bank 356* Bank 148* 

3 Bank 765* Bank 765* Bank 765* Bank 317* Bank 186* Bank 276* Bank 1172* 

4 Bank 356* Bank 497* Bank 317* Bank 765* Bank 821 AM 1073 Bank 356* 

5 Bank 148* Bank 186* Bank 497* Bank 622* HF 508 Bank 1045* Bank 765* 

6 Bank 317* Bank 317* Bank 148* Bank 276* Bank 656 Bank 954* Bank 497* 

7 Bank 1172* Bank 1045* Bank 276* Bank 1172* Bank 389 Bank 1172* Bank 317* 

8 Bank 276* Bank 136* Bank 1172* Bank 1045* AM 860 AM 873 Bank 276* 

9 Bank 136* Bank 148* Bank 136* Bank 148* Bank 1176* HF 304 HF 673 

10 Bank 186* Bank 356* Bank 954* Bank 136* Bank 627 Bank 765* Bank 136* 

11 Bank 954* Bank 1172* Bank 186* Bank 954* Bank 1045* Bank 317* AM 541 

12 Bank 1045* HF 508 Bank 553* Bank 553* Bank 136* Bank 136* Bank 954* 

13 Bank 553* Bank 821 Bank 1045* CCP 565 Bank 667 Bank 289 FS 373 

14 Bank 667 CCP 565 Bank 289 Bank 289 Bank 765* Bank 148* Bank 186* 

15 Bank 312* Bank 954* Bank 667 Bank 186* FS 920 Bank 622* AM 538 

16 Bank 1176* Bank 553* Bank 804 Bank 782 AM 104 CCP 565 Bank 553* 

17 Bank 804 Bank 1176* Bank 1176* AM 873 AM 345 Bank 782 Bank 1045* 

18 Bank 389 Bank 389 Bank 312* Bank 1176* FS 1075 HF 182 AM 937 

19 Bank 782 Bank 656 Bank 132* Bank 304 Bank 659 HF 509 Bank 667 

20 Bank 656 Bank 667 Bank 137 Bank 804 Bank 412 Bank 553* Bank 118 

AM stands for Asset Manager (in red in the table); HF for Hedge Fund (in blue); FS for Financial Service company 
(orange); CCP for central clearing counterparty (green); N.A. for not available; * signals that the bank belongs to 
the G-SIBs identified by the Financial Stability Board. 
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