
OPEN ACCESS

ll
Perspective

A Life Cycle Thinking
Framework to Mitigate the Environmental
Impact of Building Materials
Beijia Huang,1,3,* Xiaofeng Gao,2,3,4 Xiaozhen Xu,1 Jialing Song,1 Yong Geng,5,* Joseph Sarkis,6 Tomer Fishman,7

Harnwei Kua,8 and Jun Nakatani3
1Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
2Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing
400045, China
3Department of Urban Engineering, The University of Tokyo, Tokyo, Japan
4Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
5China Institute of Urban Governance, School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai 200030, China
6Foisie School of Business, Worcester Polytechnic Institute, Worcester, MA, USA
7School of Sustainability, Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel
8Department of Building, School of Design and Environment, National University of Singapore, Singapore, Singapore
*Correspondence: ywhbjia@gmail.com (B.H.), ygeng@sjtu.edu.cn (Y.G.)
https://doi.org/10.1016/j.oneear.2020.10.010

SUMMARY

Urbanization and population growth have contributed to a tripling of building material consumption from
2000 to 2017. Building materials have a range of environmental impacts throughout their life cycle, from
extraction, processing, and transport of raw materials to building construction, use, and eventual demolition
and waste. Mitigation measures that target specificmaterials or value chain stagesmay therefore have incre-
mental or even adverse net environmental effects. In this perspective, we develop a framework for applying
life cycle thinking to identify key impacts and corresponding mitigation approaches, inform building design
and material selection, and ensure effective treatment and recycling of construction and demolition wastes.
Life cycle evaluation can also be used to assess and avoid environmental trade-offs among life cycle stages.
Challenges for implementing these life cycle principles include collecting and integrating inventory data for
products, managing multiple stakeholders within the construction industry, and monitoring end-of-life im-
pacts; measures for overcoming such challenges are discussed.
INTRODUCTION

Rapid urbanization and population growth has resulted in soar-

ing consumption of building materials.1,2 Global consumption

of building materials tripled from 6.7 billion tons in 2000 to 17.5

billion tons in 2017; concrete, aggregates, and bricks are the

most commonly used building materials (Figure 1A). The largest

growth in building material use over this period was in China,

which has experienced accelerated urbanization, accounting

for more than half of the global use of building materials in

2017 (Figure 1B). Use of building materials in Europe and North

America stabilized and even decreased during this same period.

Increased global consumption of building materials has re-

sulted in equally extensive pollutant and waste emissions. The

environmental costs of building materials occur along their value

chain activities ranging from extraction tomanufacture and treat-

ment after demolition.2,7–10 Cement, steel, and concrete have

the most severe environmental burden during their manufac-

ture.11 At the disposal stage of the material life cycle, stone,

metal, cement, and wood release leachate emissions containing

organic acid, bacteria, heavy metal ions, and multiple air pollut-

ants. Incineration processes discharge heavymetals and volatile

organic acids into the environment.12,13
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Multi-pronged strategies to reduce the environmental burdens

of building materials have been proposed, beginning with build-

ing design.14–16 During later value chain stages, such as con-

struction and waste treatment, site monitoring with pollution

and emissions controls have helped to mitigate environmental

burdens.17,18 Building material recycling efforts also occur

throughout the value chain stages. These recycling efforts

reduce usage of virgin materials while mitigating the environ-

mental costs that are embedded in materials.19–21

Most state-of-the-art studies discussing mitigation measures

have targeted specific materials or value chain stages. Without

a holistic perspective, mitigationmeasures for one life cycle stage

may result in incremental or even adverse environmental effects.

Prefabricated and modular construction is one example of an

intervention aimed at improving the sustainability of the construc-

tion industry. Although prefabricated and modular construction

has the advantage of reducing the amount of waste produced in

the construction and waste treatment stage,22 the energy con-

sumption of long-distance transportation of prefabricated building

components may offset the benefits of greenhouse gas (GHG)

mitigation generated from the treatment processes.23 These ef-

forts may therefore have an adverse net environmental impact

when considering the whole life cycle of building materials.
by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Annual Global Building Material
Use during 2000–2017 byMaterial and Region
More details are available in Table S1. Data source
of building material intensity: Heeren and Fishman
(2019),3 Huang et al. (2018)4 Marinova et al. (2020);5

data source of annual constructed building area:
Deetman et al. (2020).6
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Integrated analysis is also necessary to identify effective mitiga-

tionmeasures because the pollution impacts of buildingmaterials

are also closely related between different life cycle stages. For

instance, environmental impact assessment of the manufacturing

stage could inform how the design of buildings can bemodified to

avoid or reduce the corresponding impacts.

In this perspective, we argue that environmental impacts of

building materials and mitigation approaches must be evaluated

through life cycle thinking to avoid strategies that can mitigate

environmental impacts in one stage but may have more adverse

impacts in other life stages. Initially, we generally describe life cy-

cle thinking in a building materials context. Then we introduce

various holistic and integrative strategies and tools for mitigating

environmental impacts. We also identify challenges and provide

insights on how to overcome these challenges.

LIFE CYCLE THINKING FOR BUILDING MATERIALS

The full life cycle stages—value chain or supply chain pro-

cesses—of building materials include the extraction of raw ma-

terials, processing and manufacture of these raw materials,

transportation, construction and retrofitting, use and mainte-

nance, demolition and wastemanagement, disposal and circular

processing through reuse, recycling, and recovery24 (Figure 2).

As a technique for assessing the potential environmental im-

pacts associated with a product, life cycle assessment (LCA)
can help assess the environmental impacts

associated with all the stages of the life of

building materials (Figure 3). Material, en-

ergy usage, and emissions inventory data

from the various stages of building mate-

rials need to be captured, either from case

investigations or through building material

databases such as Ecointent,25 ELCD (Eu-

ropean Life Cycle Database),26 and US

LCI (US Life Cycle Inventory).27 Impact

assessment can be conducted through

LCA software such as Gabi and Simapro.28

Thereafter, an interpretative analysis of

desired changes can reveal impact mitiga-

tion approaches.29–31 In the analysis in this

paper, the energy consumption of facilities

during the building operations process is

not captured. We bounded our evaluation

to focus on building materials instead of

the operations of buildings or facilities.

Acquiring complete building life cycle in-

ventory (LCI) data over the material life-

span is challenging, as it would require

sustained data collection over a long
period and from different stakeholders.32 This challenge is espe-

cially true when integrating building material LCI of demolition

and waste treatment with the manufacturing process stages.

To address this challenge, we propose extending LCA to include

life cycle thinking (LCT) to explore roadmaps for mitigating the

environmental burdens of building materials.

LCT is a systemic framework that takes a holistic view of the

production and consumption of one product or service.33,34 In

the case of building materials as a target product, LCT would

incorporate environmental and socio-economic performance

during the life cycle of building materials and seek approaches

to reduce the usage of building materials and related emissions.

LCA serves as the foundation enabling LCT by quantitatively

evaluating the environmental impacts of one product or service

through its entire life cycle.

Here, we develop five major building material LCT principles.

First, we propose steps for using LCA and LCT to identify key

environmental impacts of building materials and corresponding

mitigation approaches. Next, we emphasize LCT approaches

to building design, material selection, and construction and de-

molition waste (CDW) treatment and recycling. We then discuss

how LCT can be used to avoid environmental trade-offs in the

building material life cycle. Coupling LCAwith material flow anal-

ysis (MFA) and geographic information systems (GIS) is also dis-

cussed as a further principle that can incorporate spatial and

temporal aspects of the impacts of building materials.
One Earth 3, November 20, 2020 565



Figure 2. Conceptual Diagram of Building
Material Life Cycle
Arrows represent building material sources (blue)
and both general (black) and circular (green) mate-
rial life cycle processes and value chains.
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IDENTIFY KEY IMPACTS AND MITIGATION
APPROACHES

One of the first principles of LCT is to help identify impacts and

mitigation approaches for various materials and stages. Each

building material life cycle process activity involves energy and

resource consumption and pollutant emissions (see Figure 4),

which vary on both input and output dimensions. Extraction

and manufacturing of building material activities result in almost

90% of the life cycle environmental pollutants, not including the

treatment process.4 Environmental impacts during transporta-

tion and construction include nitrogen oxides (NOx) and carbon

dioxide (CO2) emissions resulting from fossil fuel consump-

tion.19,35 Building waste treatment includes waste plaster and

wood, which are key contributors of organic acid in landfills.36,37

Incineration of wood, plastic, and paper generates pollutants

such as ammonia (NH3), heavy metal ions, and volatile organic

compounds (VOCs);38–40 each has human and ecological

toxicity impacts.

We have evaluated environmental impacts in the extraction

and manufacturing stages of key building materials with the

LCA methodology known as ReCiPe.4 Through normalizing41,42

to global indicators in 2000, our results show that human toxicity,

fossil fuel consumption, global warming, andmetal consumption

are key environmental impacts, as summarized in Figure 5.

Tracing the sources of these impacts shows that human toxicity

is caused by heavy metals emitted from the raw material mining

and manufacturing process of cement and concrete. Fossil fuel

consumption due to coal, oil, electricity, and natural gas demand

occurs in the manufacture of iron, brick, gravel, and cement. The

impact of global warming arises from energy consumption in the

production of steel, cement, and concrete. Chemical reactions in

the production of clinker used in cement production also contrib-

utes to global warming.4

Determining the environmental impact of building materials is

only the beginning of this process. LCT should incorporate stra-

tegies to mitigate environmental impacts. To reduce the impact

on global warming, reducing energy consumption and using less

CO2-intensive energy sources in steel and lime production have

been identified as effective approaches. Global warming pres-
566 One Earth 3, November 20, 2020
sures can be reduced through reducing

consumption or using substitute materials

with lower GHGemissions, such as shifting

from traditional blocks to hollow concrete

blocks or stabilized soil blocks.24

The impact on human toxicity can be

reduced by preventing discharge of heavy

metals in the extraction and manufacture

of concrete, bricks, and cement. Renew-

able bio-materials, such as wood and

bamboo, can reduce environmental im-

pacts and depletion of fossil fuel andmetal
resources.43 Recycling of concrete, steel, andwood are effective

measures to mitigate environmental burdens by reducing the

requirement for virgin material resources and alleviating the envi-

ronmental burden of waste treatment.

Even though extraction, manufacturing, and disposal stages

are identified as having a significant environmental burden,2,8–

10 more complete determination of the impacts throughout the

life cycle activities of building materials requires further study.

Additional studies are needed due to lack of integrated inventory

data. Case studies to track data on the inputs and outputs of

specific buildings, from material extraction to final disposal

stage, are needed to develop more reliable estimates. Tracing

these data and analyzing the environmental performance of

building materials over the full life cycle can provide more accu-

rate estimates of the impacts and additional mitigation stra-

tegies.

BUILDING DESIGN AND MATERIAL SELECTION

The second major LCT principle is emphasizing building design

and material selection to reduce environmental burdens. The

design process is essential for avoiding or reducing environ-

mental impacts; it also sets the stage for enhancing life cycle

sustainability of building materials and building operations.

Design and material selection can reduce environmental bur-

dens during manufacturing, construction, application, decon-

struction, and recycling.

Interventions such as eco-labeling44–46 can support the pro-

cess of matching building materials and products to specific

functions while minimizing associated environmental impacts.

Environmental product declaration schemes have been used in

some countries to assess the environmental burden of building

materials,47–49 and can be applied to other materials as well.

Green building certification systems—a form of eco-label cer-

tification—including BREEAM (Building Research Establishment

Environmental Assessment Method), CASBEE (Comprehensive

Assessment System for Built Environment Efficiency), and

LEED (Leadership in Energy and Environmental Design) use

LCA for building evaluation and certification.50–53 For example,

builders receive certification points for using recycled building



Figure 3. Life Cycle Assessment Application
Framework for Building Materials
Blue shading represents the life cycle of building
materials. LCA boundary (dashed line) includes
input resources, building materials, and output
emissions in different life stages. Inventory data
include energy and water usage, building materials,
and polluting emissions.
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materials in these certification systems.54 LEED also offers

credits for life cycle impact reduction by encouraging building

and material reuse, renovation of abandoned or blighted build-

ings, and GHG reduction through LCA. CASBEE requires life

cycle information for recycled building materials to ensure the

alleviation of environmental impacts. BREEAM evaluates the re-

sources of building materials and offers credits for projects with

green supply chain management. Integrating LCA into green

building certification tools promotes the greening of buildings

in the whole life cycle.

Anti-pollution and anti-corrosion elements in construction

design protect buildings from being polluted with heavy metals

and reduce the production of heavy metal-imbued buildings.55

These anti-pollution approaches apply to industrial buildings,

especially chemical plants. It is also crucial to recycle construc-

tion materials through ‘‘design for deconstruction’’ with easier

disassembly and recyclable construction materials.56 Design

for deconstruction brings us to our next LCT for building mate-

rials principle: CDW treatment and recycling to reduce environ-

mental impacts.

CONSTRUCTION AND DEMOLITION WASTE
TREATMENT AND RECYCLING

CDW represents building materials after the end of life of build-

ings.57 We introduce a separate LCT principle for CDW because

the potential to reduce the environmental burden from activities

can be substantial at this stage. The first two LCT principles align

mostly with activities earlier in the value chain. We now turn our

attention to building materials at building end of life.

CDW materials include concrete, steel, wood products,

asphalt shingles, and bricks.58,59 CDW treatment can release

significant environmental pollutants and threaten land use.60 Us-

age of recycled materials reduces the use of virgin materials and

energy consumption, leading to mitigation of embodied environ-

mental impacts.61,62
Efficient CDW recycling treatment

requires sorting at the deconstruction

source where the building or facility is

dismantled.58 Reusable and recyclable

materials, including wood, concrete,

metals, and brick, need to be collected at

the source. Materials that are environmen-

tally damaging in landfill, such as scrap

metal and contaminated wood,63 need to

be separated and stored in separate pro-

tected landfills. Harmful materials such as

asbestos need to be carefully treated.64

These approaches have been well prac-
ticed in countries such as the US and Japan,58,65 but need to

be reinforced in most developing countries, including China.

Figure 6 graphically summarizes key CDW treatment and recy-

cling process flows. Waste concrete, brick, ceramic tiles, and

gravel may be used for aggregate road pavement or as building

materials. Steel, glass, plastic board, and plastic can be recycled

after proper processing and manufacturing.

LCT requires special attention to be given to recycling

high environmental burden materials, especially concrete

and steel. Concrete waste typically comprises the largest

fraction of CDW and is heavy. On-site crushing and recy-

cling can help avoid energy consumption from transporta-

tion of this waste. The environmental burdens and benefits

of steel waste include collection, sorting, processing,

melting, purification, solidifying, and transportation—all ac-

tivities that need careful LCT evaluation.66 Economically

viable recycling technologies are key for enhancing the envi-

ronmental performance of building materials throughout their

life cycle.4

LIFE CYCLE THINKING TO AVOID PITFALLS

Use of LCT to avoid pitfalls—especially those associated with

trade-offs among environmental concerns—is the fourth princi-

ple of LCT in a building materials value chain. Since LCA results

cover various kinds of environmental impacts among life cycle

stages, trade-offs may exist when balancing environmental

and socio-economic priorities.67 LCA needs to elucidate envi-

ronmental costs and benefits to help identify optimal environ-

mental outcomes.

For example, double-glazed windows may have greater envi-

ronmental burdens than standard windows during their manu-

facture. Yet, during building usage, double-glazed windows

are more environmentally beneficial from an energy-saving

perspective.68 It would be necessary to evaluate the life cycle

cost-benefit of alternative materials in a specific region before
One Earth 3, November 20, 2020 567



Figure 4. Key Environmental Impacts during the Life Cycle of Building Materials
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selecting materials and making environmentally optimal de-

cisions.

Retrofitting is an example of using LCT in trade-off situations.

A building LCA program in Japan conducted a scenario analysis

comparing buildings with 35- and 100-year lifespans. Their case

study results revealed that although 100-year-old buildings

consume more building materials from additional retrofitting

rounds, their annual environmental pollution is largely reduced.

For these longer-life buildings, GHG emissions may be reduced

by 14%, acidification reduced by 11%, human health concerns

reduced by 11%, and fossil fuel depletion reduced by 11%.69

If building retrofits or reconstruction are planned, life cycle envi-

ronmental evaluation balanced with economic and social bene-

fits should be considered.

Another area influencing building materials LCT and trade-offs

are prefabricated buildings.70–72 Their environmental burdens

and benefits during thematerial manufacturing and building con-

struction processes are difficult to separate. The building com-

ponents of prefabricated housing are built offsite and then

assembled or installed after transport to the construction

site.73 Prefabricated construction needs much less on-site en-

ergy and labor and discharges less environmental pollutants

than traditional construction methods.74,75 However, during the

manufacturing process of assembling components, prefabri-

cated components would need additional processes such as

steam curing to strengthen sub-assemblies.75,76 Further, prefab-

ricated components are oversized with heavy loads, therefore

the additional energy consumed during transportation might

offset the benefits of GHG mitigation during the construction

phase. Their intensive use of roadways also increases roadway
568 One Earth 3, November 20, 2020
maintenance, which results in additional environmental

impacts.23

Conflicts and trade-offs across different value chain stages for

prefabricated buildings require evaluation of environmental

costs and benefits across the whole life cycle and value chain

stages. Geographic and socio-economic factors may also

come into play. For example, some locations may encounter ex-

tra environmental costs in manufacturing and transportation,

leading to loss of energy savings benefits during the construction

process of prefabricated buildings. Thus, prefabricated building

choices may not be a rational option for achieving environmental

mitigation goals. Some additional spatial and temporal issues

are discussed in the next section.

There are also trade-offs in CDW recycling. For example, when

incinerating CDW and recycling fly ash into alternative cement

products, the process itself is energy intensive and discharges

multiple air pollutants.77,78 While some material recycling pro-

cesses can reduce specific environmental impacts, some recy-

cling treatments cause significant environmental burdens.79

For instance, concrete recycling may reduce acidification out-

puts, but this activity has significant land consumption require-

ments. Another example is brick and mortar recycling, which

has greater environmental costs than benefits.79

Recycling rates are still low in developing countries, mainly

due to technology shortages and market failures.80 There are

substantial opportunities for improvement in the global recy-

cling rates of building materials. If this additional recycling is

to be pursued, environmental costs and benefits during the

entire life cycle need to be carefully evaluated to avoid adverse

outcomes.



Figure 5. Environmental Impact Indicators
Associated with the Production of Building
Materials Used in China in 2015
Impact indicators were determined using the
ReCiPe method, and normalized into equivalent
value with global impact indicators in 2000.
Source: Huang et al. (2018).4
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SPATIAL AND TEMPORAL INTEGRATION

The final major LCT principle in a building materials value chain is

the evaluation of spatial and temporal aspects. This evaluation

can help further support identification of potential environmental

burdens and remedies. LCA has the potential to provide insights

based on geographic region. To be able to do this effectively,

LCA requires integration with tools such as MFA, which can help

track building material inflow and outflow by region. MFA can

quantitatively anticipate the environmental burdens for regions,

helping to support LCT.MFAcanalso informcategoriesandquan-

tities for demolishing building waste in specific time periods.81,82

MFA can estimate the metabolism of building materials using

models that use floor space, material intensity, and building life-

time parameters.83 Life cycle information includes buildings, cat-

egories, and quantities of demolition waste generated in a given

time period for a specified region.84 This information assists in

CDW treatment or recycling.

Using steel and concrete waste as an example, our calculations

predict that the amount of CDW will reach 440 million tons and
7,750 million tons in 2050 for steel and con-

crete, respectively. This prediction is three to

four times the amount of CDW in 2000

(Figure 7). Recycled steel has the potential to

be a major construction material.85 A sup-

ply-demand analysis is needed to avoid ca-

pacity surplus for steel production. Concrete

CDWrequiresmore recyclingoptions in addi-

tion to common practices such as pavement

and aggregate.32,86,87 Reuse options such
asrecycling theconcretestructuredirectly fromdeconstructioncould

be another viable approach. As shown in Figure 7,more attention on

the impactof recyclingsteelandconcrete—especially inChinawhere

there is rapid construction and abundant demolition—is needed.

LCAandMFA integratedwithGIS canhelp to further understand

the energy demand and environmental performance of building

stocksacrossspatial scales.GIS-based inventorymodelingofpro-

ductionprocessesallowsseveral refinements toLCA.GIS technol-

ogy offers spatial data and analytical functions to quantify flows by

location using lifetime, building material types, and quantities

data.88 Sustainable planning and policy making becomes easier

with the application of GIS. Potential policy decisions may include

refraining from short lifespan buildings, supporting adaptive reuse

of buildings, and urban mining of building materials.89 Moreover,

coupling LCA with MFA and GIS can significantly advance LCT.

OVERCOMING LIFE CYCLE THINKING CHALLENGES

The LCT principles we have introduced provide direction for miti-

gating the environmental impacts of building materials from the
Figure 6. Construction and Demolition
Waste Treatment and Recycling
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Figure 7. Global Steel and Concrete
Demolition Waste Estimates, 2000–2050
(A) Demolition steel and (B) demolition concrete.
Values arereclassified and calculated based on data
from Deetman et al. (2019).6 Only the median as-
sumptions are obtained from their result pre-
sentations, the uncertainty estimates are unavai-
lable. Details of the analysis are available in Tables
S2 and S3.
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life cycle or value chain perspective. These measures can help

support sustainable decisions and policies using life cycle the-

ory. We would be remiss, however, if we did not clarify the chal-

lenges of LCT in this context.

Collecting inventory data for products is one such challenge.

LCI refers to the LCA accounts data. LCI may provide data on

raw materials, energy, and water usage; it also may include air,

water, and land emissions.90 Figure 3 shows that the life cycle

of building materials involves several processes across a value

chain. Collecting inventory data for products becomes even

more difficult for building materials with a long lifespan. In addi-

tion, public building LCI and databases are mostly national aver-

ages, lacking local level data, which increases the difficulty

of LCA.

Big data-based tools such as building information modeling

(BIM) can aid data and information collection for LCA and LCT.

With data efficiently collected andmonitored during the life cycle
570 One Earth 3, November 20, 2020
of a building and its materials from design

to deconstruction, material efficiency can

be enhanced by minimizing the amount of

oversupply and waste produced on site.

Integrated inventory data collection—as

in Figures 3 and 4—can facilitate the man-

agement of environmental impacts and

enable designers, contractors, and owners

to make more environmentally responsible

decisions.91

Another major challenge for applying

building materials LCT is managing multi-

ple stakeholders within the construction

and building materials industry.92,93 Policy

and market mechanism designs can moti-

vate different stakeholders to complete ac-

tivities for reducing the environmental

burden of building materials. Extended

producer responsibility is an option to

encourage recycling of building materials,

including concrete, steel, and wood.94 At-

taching producer responsibility to building

materials and wastes encourages manu-

facturers to design more sustainable and

recyclable building materials.95

To promote CDW recycling, process

monitoring of CDW among emitters, col-

lectors, transporters, and treatment com-

panies should be reinforced. Regions

where CDW treatment and recycling is

not performing well could utilize a top-

down regulatory system to standardize
CDW management practices.96 Regulatory measures could

include penalties for illegal CDW treatment behaviors.96,97 Mar-

ket-based measures such as reliable recycled CDW product

standards58 could to help promote a mature CDW recycling

market.

Additional LCT challenges include improving tools such as

LCA, MFA, and GIS through better data and indicators, hosting

and facilitating expert groups to manage and generate informa-

tion, and disseminating their work through integrative and broad

information outlets.

OUTLOOK

There is a need to be cautious about strategies that can mitigate

environmental impacts in one stage but may have more adverse

impacts in other life stages. Building material value chains,

including prefabricated construction or CDW recycling, require
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comprehensive and thoughtful evaluation. There are technolog-

ical, social, temporal, and geographic concerns that can result in

complex trade-offs between environmental costs and benefits.

LCT for building materials can inform decision makers in

choosing the most sustainable approaches, rather than relying

primarily on economic decision criteria. For example, reduction

is more efficient than reuse and recycling of waste for sustain-

able buildings within circular economic and sustainability princi-

ples; yet reduction is usually ignored. More attention should be

paid to approaches for enhancing building material efficiency

and reducing environmental burdens.

Buildingdesignersneedawarenessofhowtomatchbuildingma-

terials to specific designs, while minimizing their associated envi-

ronmental impacts. Designs that include end-of-life disassembly

of constructionmaterials canhelp achievehigher levels of recycling

of buildingmaterials. Inaddition, sustainable urbanplanning should

be promoted to avoid shortening the lifespan of building and civil

infrastructure, especially given rapid global urbanization.

We have proposed several LCT principles and practices tomiti-

gate the environmental impacts of building materials across the

value chain. A further question would be how to operationalize

these principles effectively. Understanding the needs and values

of different stakeholders is critical, but balancing the needs and

requirements of various stakeholders is also challenging. Key

stakeholders include building designers, building material pro-

ducers, the construction industry, building users, CDW treatment

companies, and policy-makers. Understanding each stakehold-

er’s concerns and designing polices to motivate them to coop-

erate and promote sustainable building development will be a

large, but necessary, challenge that needs to be met.

This perspective highlights that building materials have a

range of environmental impacts, including but not limited to fossil

fuel consumption and global warming. GHG emissions should

therefore not be the sole focus of strategies for minimizing the

environmental impacts of building materials. By taking the whole

life cycle of buildings and their materials into consideration, LCT

is key to comprehensively understanding the costs and benefits

of each phase and offering options to holistically improve the

sustainability of the building materials value chain.

SUPPLEMENTAL INFORMATION
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